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Abstract: Flat-band systems have attracted consider-
able interest in different branches of physics in the past 
decades, providing a flexible platform for studying 
fundamental phenomena associated with completely 
dispersionless bands within the whole Brillouin zone. 
Engineered flat-band structures have now been realized 
in a variety of systems, in particular, in the field of pho-
tonics. Flat-band localization, as an important phenom-
enon in solid-state physics, is fundamentally interesting 
in the exploration of exotic ground-state properties of 
many-body systems. However, direct observation of some 
flat-band phenomena is highly nontrivial in conventional 
condensed-matter systems because of intrinsic limita-
tions. In this article, we briefly review recent developments 

on flat-band localization and the associated phenomena 
in various photonic lattices, including compact localized 
states, unconventional line states, and noncontractible 
loop states. We show that the photonic lattices offer a 
convenient platform for probing the underlying physics 
of flat-band systems, which may provide inspiration for 
exploring the fundamentals and applications of flat-band 
physics in other structured media from metamaterials to 
nanophotonic materials.

Keywords: artificial Dirac materials; flat-band states; real-
space topology; Kagome and Lieb lattices; super-honey-
comb lattices; noncontractible loop states.

1  �Introduction
Two-dimensional (2D) photonic systems with flat-bands 
have attracted increasing interest in recent years [1, 2], 
inspired by multiband Hubbard models earlier intro-
duced in condensed matter physics [3–5]. A flat-band is 
a completely dispersionless energy band that extends in 
the whole Brillouin spectrum [6–9]. As the kinetic energy 
is completely quenched, which suppresses wave trans-
port, particle interaction becomes dominant, leading to 
some exotic or unconventional correlated ground states. 
Such enhanced interaction makes flat-band systems a 
perfect candidate for investigation of complex many-body 
quantum states and the physics of strongly correlated 
systems in the absence of a magnetic field [5, 10–19]. 
One well-known example is the fractional quantum Hall 
effect, where the interaction induces nontrivial behavior 
of the electrons in topological flat-bands [20–22]. Numer-
ous efforts have been made to understand the underly-
ing flat-band physics within the community of ultracold 
atomic gases [23, 24] and exciton-polariton condensates 
[25]. It has also been predicated that the flat-band features 
can support nonlinear compactons [26, 27] and inter-
action-induced topological phases [28], which open up 
new avenues for studying the interplay between nonlin-
earity and spin-orbit coupling phenomena in topological 
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flat-band systems. Thus far, flat-bands have been realized 
in a variety of systems including ultracold atoms, various 
metamaterials, electronic and other realistic materi-
als, and photonic waveguide arrays [29–41]. A detailed 
account on artificial flat-band systems and related discus-
sions can be found in recent review articles [1, 2] (see, e.g. 
Ref. [42] for further articles related to flat-band magnet-
ism in frustrated crystals, and Refs. [43, 44] for a review on 
topological flat bands).

Artificial photonic structures can provide controlla-
ble platforms to explore physical phenomena that are dif-
ficult to achieve in real materials. In particular, photonic 
lattices have proven to be extremely effective for investi-
gating fundamental physics in simple optical settings. 
The underlying physics involved relies on the analogy 
between the paraxial equation for electromagnetic waves 
and the Schrödinger equation describing quantum phe-
nomena. Photonic lattices offer exquisite control of initial 
conditions and allow for monitoring the actual wave func-
tions (including phase). Therefore, it is possible to directly 
observe wave dynamics using classical light waves in pho-
tonic lattices. Over the past two decades, many intriguing 
fundamental phenomena have been demonstrated in eva-
nescently coupled waveguide arrays created using either 
femtosecond (fs)-laser writing or optical induction tech-
nique, including discrete solitons, dynamical localization, 
and Anderson localization in disordered lattices [45–53]. 
These developments have opened up new avenues for the 
manipulation of light.

Femtosecond laser writing of photonic lattices was 
first implemented in 2004 for the fabrication of dielectric 
waveguide arrays [54]. Since then, many successful and 
fascinating examples of laser-written photonic structures 
have been realized with this technology. In the fs-laser-
writing method, typically a focused laser pulse is sent 
into bulk fused silica, which creates a localized perma-
nent increase in the refractive index of the material. Con-
sequently, when moving the sample with respect to the 
writing beam, a longitudinally extended index modifica-
tion (a waveguide) is created. This fabrication method has 
the advantage of supporting the generation of compact 
two-and high-dimensional lattices of nearly arbitrary 
geometries, leading to the observation of a variety of fun-
damental phenomena in such lattices.

In Figure 1, we show some typical examples of laser-
written and engineered flat-band photonic lattices. Laser-
written photonic Lieb lattices [58] were first created by 
two independent groups (Mukherjee et al. [30] and Vice-
ncio et al. (Figure 1A) [32]) for the observation of compact 
localized states (CLSs). Recently, Hassan et  al. reported 
the experimental realization of novel topological corner 

states of light in laser-written 2D photonic Kagome lattices 
(Figure 1B) [55]. Two-dimensional honeycomb-like lat-
tices, known as photonic graphene [59], which have been 
used to explore photonic Landau levels [60] and Floquet 
topological insulators [61, 62], have recently been estab-
lished with engineered micropillar photonic resonators 
for the demonstration of type-III Dirac cones that combine 
flat and linear dispersions (Figure 1C) [56]. As another 
example, losses can be introduced by rapid longitudinal 
bending of the waveguides or introducing scatters in the 
laser-writing technique, enabling the realization of non-
Hermitian lattice Hamiltonians [63], which leads to the 
demonstration of PT (parity-time)-symmetric flat-bands 
(Figure 1D) [57].

In this mini-review, we focus on novel phenomena in 
optically induced flat-band lattices established in non-
linear crystals. We mainly revisit our recent experimental 
and theoretical progress in the demonstration of flat-
band states and novel light localization in engineered 
photonic flat-band lattices. In Section 2, we briefly sum-
marize two kinds of flexible approaches based on the 
optical induction technique to obtain photonic flat-band 
lattices. In Section 3, we review the numerical method 
and theory for the calculation and simulation of flat-
band light localization in photonic lattices. In subse-
quent sections, recent experimental work is summarized 
with respect to the demonstrations of conventional flat-
band states – the so-called CLSs in Lieb and Kagome 
lattices as well as in driven rhombic lattices. Unconven-
tional flat-band localized line states due to the flat-band 
touching dispersive bands in photonic Lieb and super-
honeycomb lattices (sHCLs) are summarized in Section 5.  
These line states, independent of linear superpositions of 
conventional bulk CLSs, can be considered as an indirect 
illustration of the non-contractible loop states (NLSs). 
Furthermore, in Section 6 we discuss two alternative 
approaches to directly observe NLSs in photonic Kagome 
lattices: one is to realize the robust boundary modes 
spanning the whole boundary of a finite lattice, and the 
other is to achieve direct observation of the NLS in an 
annular-shaped Kagome lattice, which hosts such a loop 
state along the toroidal direction. These robust bound-
ary modes and NLSs are direct manifestations of the 
real-space topology in such flat-band systems. Finally, 
in Section 7 we summarize our work and present some 
outlooks for future exploration of the field. This review 
is not intended to be a comprehensive account of the vast 
flat-band literature, nor to repeat the published reviews 
on this subject [1, 2], but it is rather a concise account of 
the study (mainly from our group) on flat-band phenom-
ena in various photonic lattices.
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2  �Experimental method of lattice 
induction

Optical induction is a simple yet effective method for 
the creation of photonic waveguide lattices [45, 46]. The 
induction technique is based on optically induced non-
linear refractive index change in a bulk nonlinear crystal, 
somewhat similar to that in the generation of optical 
spatial solitons (see Ref. [51] for a detailed review). This 
technique, especially in photorefractive materials, allows 
the realization of reconfigurable (non-permanent) pho-
tonic lattice structures [46, 50, 64–66], in contrast to the 
fs-laser-writing technique that inscribes structures perma-
nently in silica glass [67, 68]. In what follows, we discuss 
two main approaches for the realization of photonic lat-
tices using optical induction in photorefractive crystals. 
The first one uses periodic nondiffracting waves, where 
the phase and amplitude of multiple interfering plane 
waves can be modulated to create different 2D periodic 
lattices. Many of the original studies on optically induced 
lattices were associated with this method. The other 

technique, developed more recently, is the site-to-site 
continuous wave (cw)-laser-writing technique, as shown 
in Figure 2. Compared with the former method, the latter 
has the advantage of flexibly establishing lattices with tai-
lored boundaries, as well as aperiodic lattices of arbitrary 
structures.

2.1  �Multiple-beam interference optical 
induction technique

Multiple-beam interference optical induction was first 
proposed for the experimental observation of 2D optical 
discrete solitons in photonic lattices, following the pre-
diction by Efremidis et al. [45]. Soon afterward, this tech-
nique was further developed using partially coherent 
beams featured with the suppression of modulation insta-
bility in nonlinear media [69]. Such a mechanism of the 
optical induction provided an effective way for inducing 
nonlinear photonic lattices and various reconfigurable 
photonic structures with defects and surfaces [70], and for 
the recent demonstrations of photonic graphene lattices 
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Figure 1: Examples of laser-written and engineered flat-band photonic lattices.
(A) A photonic Lieb lattice established by fs-laser-writing technique for demonstration of flat-band compact localized states [32].  
(B) A photonic Kagome lattice established for demonstrating topological corner states exhibiting a remarkable degree of flexibility and 
control [55]. (C) A photonic honeycomb lattice of micropillars engineered with type-III Dirac cones that combine flat and linear dispersion 
bands [56]. (D) Schematic of the tripartite PT-symmetric photonic lattice and resulting dispersion relation showing the partially flat band 
around the exceptional point of the structure [57].
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for exploring a variety of fundamental phenomena includ-
ing edge states [69] and pseudospin angular momentum 
[64, 71, 72].

We now discuss how to fabricate 2D artificial photonic 
flat-band lattices using the multiple-beam interference 
optical induction technique in bulk photorefractive materi-
als. In this method, the key point is to create a nondiffracting 
intensity pattern that can remain invariant throughout the 
nonlinear crystal by actively suppressing the Talbot effect of 
the lattice-inducing beams [69]. As such, an amplitude mask 
and a phase mask for initial phase modulation are typically 
used in the Fourier plane (momentum space) to achieve dif-
ferent lattice patterns, as done in most of our experiments 
[73]. Other variations of the method have also been imple-
mented, such as phase control with a specific filter system 
[74, 75]. The optical induction experimental technique has 
led to the fabrication of various 2D photonic lattices, from 
the graphene-like “perfect” honeycomb lattices to MoS2-like 
lattices, vortex lattices, and the Kagome lattices. The differ-
ence lies in the initial phase/amplitude modulations.

Such interference-based optical induction, however, 
has limitations for creating some lattices when the spatial 
spectra of the consisting beams do not reside in a conical 
ring. A typical example is the Lieb lattice. The Lieb lattice, 
a 2D analog of the 3D lattice exhibited by perovskites [76], 
is one of the simplest models of flat-band systems, with a 
band structure featuring Dirac cones intersected by a flat 
band. Lieb lattices have now been realized in a variety of 
settings, ranging from photonic devices [30, 32, 77–81] and 
electronic systems [40] to ultracold atomic gases [23]. In 
the photonics community, the linear propagation dynam-
ics of light beam in photonic Lieb waveguide arrays are 
mostly investigated in fs-laser-written structures [30, 32, 

79]. Since the Lieb lattice is not a simple Bravais lattice, 
it has three sites per unit cell in the edge-centered square 
structure, and its spectrum does not fit into a ring, as is 
the case for the honeycomb lattice. Therefore, if one wants 
to fabricate a Lieb lattice by the multiple-beam interfer-
ence technique, some necessary means of implementation 
must be included. In our early experiment [35], a simple 
yet effective method to solve the above problem was to use 
two sets of lattices for incoherent superposition. In order to 
generate a photonic lattice that is invariant along the prop-
agation direction, a quasi-nondiffracting light pattern, 
normally constructed by the interference of several plane 
waves, is required. Consequently, superposition of two or 
more simple optical patterns that are mutually incoherent 
to each other is necessary, as realized for creating one-
dimensional (1D) superlattices [82]. In the experiment for 
the Lieb case, two sets of lattice beams, namely an “egg-
crate” lattice [83] and a square lattice, are used. Note that 
the intensity maxima of the square pattern exactly fill in the 
intensity minima of the “egg-crate” pattern. Consequently, 
the intensity minima form the structure of the Lieb lattice 
by employing the self-defocusing nonlinearity in a pho-
torefractive SBN (strontium barium niobate) crystal. Such 
kind of incoherent superposition (ingeniously using an 
egg-crate lattice) can be widely used in the generation of 
other superlattices, such as the topological Su-Schrieffer-
Heeger lattices [82] in one and two dimensions.

2.2  �Site-to-site cw-laser-writing technique

The methods mentioned above are used to fabricate differ-
ent “unbounded” lattice structures without considering 

Figure 2: Experimental setup for site-to-site writing of a photonic lattice with a cw laser in a nonlinear photorefractive SBN crystal.
SLM, spatial light modulator; BS, beam splitter; FM, Fourier mask; SBN, strontium barium niobate.
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the lattice termination. However, sometimes we need 
to prepare some lattice patterns with specially tailored 
boundaries or edges. Like graphene, different edges 
support different edge states and have different char-
acteristics. For instance, some flat-band states can only 
exist in lattices with appropriate boundaries, such as the 
extended flat-band line states [81, 84–86] discussed in 
later sections. In order to observe such states, we develop 
a simple cw-laser-writing technique which can establish 
finite-sized photonic lattices with desired boundaries. 
Figure 2 shows a schematic of the experimental setup. 
An ordinarily polarized quasi-nondiffracting beam from a 
solid-state laser (λ = 532 nm) is used to illuminate a spatial 
light modulator (SLM), which creates a writing beam with 
reconfigurable input positions. The 4f system guarantees 
a quasi-nondiffracting zone of the beam as it propagates 
through the crystal. The technique relies on site-to-site 
inducing or writing waveguides in a nonlinear photore-
fractive (SBN) crystal. All the waveguides remain intact 
during the writing process due to the “memory” effect of 
the nonlinear photorefractive crystal. Different from the 
fs-laser-writing technique [67], a lattice written in the bulk 
crystal is readily reconfigurable, since one can easily erase 
it with white light and rewrite another lattice in the same 
crystal. In addition, since the crystal has strong photore-
fractive nonlinearity, one can st	 udy nonlinear wave 
dynamics in such lattices. Apparently, this method is not 
only limited to creating photonic Lieb lattices but also can 

be used to flexibly realize some flat-band lattices with vir-
tually arbitrary lattice edges, any ribbon or aperiodic pho-
tonic lattices (see Figure 3 for some examples). However, 
although this method is very flexible, it also has the disad-
vantage that the period of the lattice cannot be too small 
(typically around 26 μm or more) due to the limitation of 
“nondiffracting” region of the writing beam [81], even 
when the writing beam is a Bessel beam [80].

3  �Numerical method and flat-band 
classification

The evolution of a light beam through a photonic lattice 
is well described by the following Schrödinger-type equa-
tion under the paraxial approximation [46, 50, 51]:

	

2
0

0 0

1( , , ) ( , ) ( , , ),
2

i x y z k n x y x y z
z k n

ψ ∆ ψ⊥

 ∂ −= ∇ − ∂  
� (1)

where ψ corresponds the slowly varying electric field 
envelop of the probe beam, (x, y) are the transverse 
dimensions, z represents the longitudinal propagation 
distance into the photonic lattice, 2

⊥∇  is the 2D transverse 
Laplacian operator, n0 is the unperturbed refractive index 
of the nonlinear medium, k0 is the wave number in the 
vacuum, Δn(x, y) represents the local refractive index 

A B

E G

C D

F

Figure 3: Typical examples of the flat-band photonic lattices created in a nonlinear bulk crystal with the cw-laser-writing technique.
(A, B) Lieb [81] lattices with different boundary terminations, (C–E) Kagome lattices with different boundary terminations [86], (F) a super-
honeycomb lattice [85], and (G) a “driven” rhombic lattice with an index gradient [84].
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change corresponding to a particular 2D photonic lattice 
under study, with Δn = n0. Equation (1) has the form of the 
Schrödinger equation when the replacement is taken as 
z → t and Δn → V. The localization of flat-band states in 
lattices requires a stationary potential, implying that the 
index change Δn in Eq. (1) must be propagation-invariant; 
that is, Δn(x, y) must be z-independent. Experimentally, 
this corresponds to generation of a nondiffracting lattice-
inducing beam pattern as described above.

Under the tight-binding approximation, the above 
continuous Schrödinger-like equation can be replaced by 
a discrete equation, considering only the nearest neigh-
bour coupling effect. By Fourier transforming the tight-
binding Hamiltonian into the k space, one readily obtains 
the band structure. A lattice of dispersionless energy band 
means that there exists at least one complete flat-band in 
its spectrum, and the corresponding linear Bloch modes 
are entirely compact localized due to the destructive inter-
ference of extended waves. That is, the eigenstate ampli-
tudes strictly vanish except at a finite number of unit cells 
of the structure. This is particularly interesting because, 
in this case, waves can stay localized in the continuum. 
Additionally, these states may be robust against the pres-
ence of disorder in the system [87, 88].

Considering the properties of their eigenstates, flat-
bands can be classified into three types [2]: “symme-
try-protected” flat-bands, “accidental” flat-bands, and 
“topologically protected” flat-bands. In 1D settings, the 
CLS can be classified by the integer number U of unit 
cells they occupy [89]. “Symmetry-protected” chiral 
flat-bands, first introduced by Shima et al. [90], such as 
with the cross-stitch lattice (U = 1), form an orthogonal 
set with the simplest CLSs occupying only one unit cell 
of the lattice. “Accidental” flat-bands can be regarded 
as the case of U ≥ 2 with CLSs spanning over more than 
one unit cell formed by precisely adjusting the system 
parameters, such as with the sawtooth lattice [34, 91]. 
In such cases, the band is not always flat, as it only 
exists in some specific parameter regimes, while, the 
“topologically protected” flat-bands can be regarded 
as robust flat-bands, represented by a bipartite system 
such as the Lieb lattice with two sublattices. Bandcross-
ing is protected in a sense that it can only be removed by 
perturbations that also destroy the flatness of the band 
[92]. Like the protection of the Dirac points of graphene, 
the mechanism for this stability is topological. Very 
recently, Rhim and Yang [93] showed that flat-bands 
can be classified into two distinct classes, singular or 
nonsingular, based on whether the corresponding Bloch 
functions exhibit a discontinuity at the crossing points 
with other bands.

4  �Compact localized states in 
flat-band lattices

The characteristic of flat-band lattices is the existence of the 
fundamental CLS. The first study of flat-band models started 
with the work by Sutherland [94]. In his paper, the existence 
of strictly localized states of a flat-band was demonstrated 
in a dice lattice. The localized states persist because of local 
topology even if the lattice periodicity is destroyed. The pro-
posal of using CLSs to name the flat-band eigenmodes origi-
nated from the work by Aoki et al. [95].

In 2015, the first experimental demonstrations of sta-
tionary and transversely localized flat-band states were 
performed in photonic Lieb lattices [30, 32]. Such a flat-
band in the Lieb lattices is protected by a chiral symmetry, 
and its intersection with the dispersive bands is said to 
be protected by real-space topology [77, 92, 96] (the topol-
ogy of the inter-site couplings rather than their precise 
strengths, which will be discussed in detail in later sec-
tions), which is robust to the coupling disorder [87, 88]. 
The photonic Lieb lattice was produced early in 2014 by 
Guzman-Silva et al. [58], but that work focused more on 
the edge modes generated by stretching the lattice rather 
than the existence of the flat-band states (or whether the 
tight-binding condition is satisfied). In contrast, the work 
published in 2015 [30, 32] reported direct experimental 
observation of the fundamental flat-band states in pho-
tonic lattices, as demonstrated shortly afterward also with 
optical induced photorefractive lattices [35, 36]. These 
works attracted wide interest because they prove that 
waves can stay localized in the continuum, even in the 
absence of any defect [97], disorder [48], or nonlinearity 
[46]. Demonstrations of CLSs and a variety of associated 
phenomena have also been discussed in 1D and 2D lat-
tices, including the Stub [39], sawtooth [34, 91], rhombic 
[31, 38, 84, 98–103], Kagome [36, 86], super-honeycomb 
[85, 104], and Lieb [35, 81] lattices, thanks to the advanced 
techniques that allow for precise flat-band engineering. 
Figure 4 shows some typical experimental results of CLSs 
observed in the Lieb, rhombic, and sawtooth lattices fab-
ricated by the fs-laser-writing technique. In the case of the 
sawtooth lattice, wave localization due to presence of an 
“accidental” flat-band was observed by fine-tuning the 
inter-site coupling coefficients [34].

In the tight-binding approximation, the Bloch modes 
of Lieb lattices are only distributed in three bands: a 
completely degenerate flat-band centered between two 
dispersive bands, with all three bands touching at the 
M points (kx = ky = π) (see Figure 5A) [23, 30, 32, 77, 105]. 
Similar to honeycomb lattices [61, 66], the intersection 
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of the dispersive bands is characterized by a linear dis-
persion relation in the vicinity of Dirac-like points, 
leading to intriguing phenomena such as conical dif-
fraction and pseudospin [79, 106]. Furthermore, taking 
advantage of the superposition of CLSs inherent in the 
Lieb lattices, flat-band-based text transmission through 
such 2D perovskite-like photonic structures was demon-
strated [35], representing the experimental observation 

of distortion-free image transmission (Figure 5A) as pre-
dicted in Ref. [105]. In those experiments [35], the letter 
“L” (overlaid by a train of four fundamental modes) 
was constructed as a probe beam. For comparison, the 
probe beam with all the pixels being of equal phase is 
also launched under the same configuration. Obviously, 
the difference between distorted and undistorted image 
transmission is evident, as shown in Figure 5A.

A B CCLSs in Lieb lattices CLSs in rhombic lattices Localization in sawtooth lattices

Figure 4: Examples of the compact localized states observed in fs-laser-written flat-band photonic lattices.
(A) The CLSs and their superimposed bound states observed in a Lieb lattice [32]. (B) The CLSs and the equal-phase modes observed in a 
rhombic lattice [31]. (C) Experimental output intensity for the bulk excitation under different regimes of wave transport in a sawtooth lattice [34].
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β
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0 π/2 π 3π/2 2π
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Figure 5: Examples of the compact localized states observed in optically induced flat-band photonic lattices.
Shown are experimental results of (A) linear image propagation through a Lieb photonic lattice [35] and (B) a bound-state transmission in a 
pyrochlore-like (Kagome) photonic lattice [36]. (C) Experimental observation of a quincunx-shaped CLS which spans over two unit cells in a 
photonic rhombic lattice [84]. From left to right: the lattice, calculated band structure in the tight-binding approximation, probe beam input, 
in-phase output, and out-of-phase output.
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In addition to the light localization in Lieb lattices, 
many recent studies have been aimed at understanding 
the effect of this additional flat-band on various phe-
nomena, including Floquet topological insulators [107], 
conical diffraction, and integer pseudospin states [79]. 
The near degeneracy of other bands with zero effective 
mass is ideal for switching applications and enables novel 
topological phases with protected edge states in reso-
nance with flat-band states [62, 76, 107].

In the experiments of Zong et  al., the first demon-
stration of CLSs in a Kagome lattice was carried out [36]. 
In those experiments, they also realized a high-fidelity 
bound-state transmission through the lattice by judi-
ciously exciting a superposition of flat-band eigenmodes 
of the Kagome lattice (Figure 5B). Their work may provide 
inspiration for developing alternative light-trapping and 
image-transmission schemes in structured photonic 
materials without engineered disorder or nonlinearity. In 
addition, one can envisage the possibility for experimen-
tal demonstration of predicted novel phenomena such 
as discrete flat-band solitons and PT-symmetric phase in 
Kagome photonic lattices [57, 108, 109], and Aharonov-
Bohm photonic caging with the implementation of a syn-
thetic gauge field [31, 102, 110].

Flat-band states have also been demonstrated in a 
rhombic lattice that is robust in the presence of an exter-
nal driving field (index gradient) along the lattice axis 
by Mukherjee and Thomson [38]. Recently, Xia et al. [84] 
demonstrated the existence of CLSs in a driven rhombic 
lattice ribbon with two distinct refractive index gradients 
acting as external dc fields. Such CLSs span over two unit 
cells with a quincunx shape under the action of a driving 
force. For the first time, the flat-band state of U = 2  was 
experimentally realized (see Figure 5C). It is worth men-
tioning that the external drive added to the ribbon was 
achieved by modulating the relative intensity of the 
writing beam. We can see that the flat-band remains flat 
while the band gap is open, and does not diffract with the 
opening of the band gap. Comparing the influence of the 
direction of the index gradient on CLSs, they found that, 
with a y-gradient set perpendicularly to the ribbon, the 
undriven CLS turns into a quincunx-shaped CLS spanned 
over two unit cells (see Figure 5C). In this case, although 
the flat-band remains, the original flat-band state is no 
longer maintained, and a new flat-band state is generated 
that occupies two unit cells. Interestingly, when the index 
gradient is parallel to the ribbon, Bloch-like oscillation of 
flat-band states is observed in the momentum space [84].

Apart from the fundamental CLSs observed in the 
above experiments, there are many theoretical discus-
sions and predictions about the flat-band phenomena 

under additional symmetry or perturbations. Earlier work 
of Sutherland reported on the persistence of localized 
states if the dice lattice periodicity is destroyed [94]. The 
tunability of the CLSs is another important aspect associ-
ated with the flat-band [111]. The robustness of the CLSs 
to disorder crucially depends on the flat-band feature, for 
instance, whether the flat-band touches the dispersive 
bands or not [88]. Bergman et al. discussed about band-
touching from real-space topology in frustrated hopping 
models [92]. Examples of nontrivial and abrupt changes 
of the wavefunction properties of perturbed flat-band 
models are the appearance of the flat-band for Landau-
Zener Bloch oscillations in the presence of external fields 
[99], the effect of chiral symmetry-breaking [84] on the 
flat-band in a partial chiral dimerized Lieb lattice [112], 
the localization of weakly disordered flat-band states [88], 
chiral flat-bands with double perturbations, including 
disorder and synthetic magnetic fields [96], and anoma-
lous topological edge modes in a slowly driven photonic 
lattice [38, 100].

5  �Line states in Lieb and super-
honeycomb lattices

The conventional CLSs are compact and localized to a finite 
area in two dimensions, while the unconventional NLSs 
are a new type of flat-band eigenstates that are compact 
and localized in one direction but extended infinitely in 
the other direction. The existence of such NLSs is related 
to flat-band crossings with dispersive bands. Moreover, 
the NLSs are topologically different from the conventional 
CLSs in real space, as the NLSs cannot be continuously 
deformed into the conventional CLSs in a torus geometry 
representing the periodic boundary conditions.

In flat-band systems, one can always find a set of CLSs 
as degenerate eigenstates, whose energy is the same as that 
of the flat-band. The full sets of CLSs connected by lattice 
translation vectors are found to be linearly dependent on 
each other in certain flat-band systems. As such, the CLS 
sets are found to be incomplete. Bergman et al. [92] pointed 
out that in the majority of “frustrated” hopping examples, 
a flat-band always intersects with other dispersive bands 
at a number of discrete points in the momentum space. 
Such band degeneracy is related to the incompleteness of 
the CLSs in these models. That is to say, there exist some 
missing states that can complete the flat-band basis. Such 
missing states are accounted for by noncontractible loops 
around the torus under periodic boundary conditions (the 
so-called NLSs). More recently, Rhim et  al. theoretically 
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found that the NLSs are inherent to the singular flat-band, 
where an immovable singularity exists in the band-cross-
ing of the Bloch wavefunctions [93]. Once the degeneracy 
at the band-crossing point is lifted, the flat-band becomes 
dispersive and may acquire a finite Chern number in 
general. Such real-space topology manifesting via the 
NLSs of the flat-band is in contradistinction with the recent 
and widely studied topological features of the Bloch wave 
functions defined in the momentum space [113, 114].

The NLSs in principle exist in infinite lattices which 
are experimentally nonfeasible. Recently, NLSs were 
found to exist even in finite lattices with specially tailored 
boundaries and satisfy the destructive interference condi-
tions. Such NLSs appear as flat-band line states extended 
through the entire finite lattice that cannot be obtained by 
linear superposition of the bulk CLSs. As mentioned above, 
the band structure of photonic Lieb lattices contains a 
flat-band intersecting with the two dispersive bands at the 
Brillion zone (BZ) corners, and the CLSs in Lieb lattices are 
linearly dependent, which do not form the complete basis 
of flat-bands. One can find unusually extended flat-band 
line states, which are compact-localized in one direction 
but extended in the other direction as shown in Figure 6A. 
Xia et al. [81] reported the first realization of such uncon-
ventional flat-band line states in a finite photonic Lieb 
lattice with an appropriate termination.

Typical experimental results of the flat-band line states 
in finite photonic Lieb lattices with the bearded edge are 
depicted in Figure 6. An input probe beam is shaped into 
a dotted line pattern with alternatingly opposite phase 
(see Figure 6B1) and is sent into the cw-laser-written pho-
tonic Lieb lattices, as shown in Figure 3B. In the absence 
of the lattice, the line shape cannot be preserved after free 

propagation because of the interference between pearls 
and diffraction of each pearl (see Figure 6B2). In contrast, 
when such a line beam is launched into the Lieb lattice, 
its overall intensity pattern is well maintained (Figure 
6B3). For direct comparison, the corresponding results 
for an in-phase line beam (when all pearls are made with 
equal phase) are presented in Figure 6C1–C3. In the latter 
case, the line deteriorates as the energy couples to zero-
amplitude lattice sites (Figure 6C3). Moreover, a dramatic 
difference is observed in the k-space spectrum between 
the out-of-phase and in-phase line beams (Figure 6B4 and 
C4): the spectrum of the out-of-phase line is distributed 
along the BZ edges where the flat-band touches with the 
dispersive bands, whereas that of the in-phase one goes 
to the center of the first BZ. One can see clearly the differ-
ence between the out-of-phase beam (intact as unconven-
tional line states) and in-phase beam (strongly distorted). 
Such unconventional line states cannot be expressed as a 
linear combination of the previously observed boundary-
independent bulk CLSs but rather arise from the nontriv-
ial real-space topology as predicated by the theory [92, 93].

These line states not only represent a novel type of 
flat-band eigenstates but may also be useful for potential 
applications such as diffraction-free image transmission. 
Image transmission based on conventional CLSs has been 
demonstrated but is limited to a certain necklace-like 
shape as a superposition of “ring modes” [35]. By combin-
ing the features of the CLSs and the new line states, it is 
possible to realize large-scale image transmission with 
virtually any pattern extended to lattice boundaries [105]. 
To illustrate this, the transmission of three different letters 
based on the combination of the line states and the CLSs is 
realized with a bearded Lieb lattice [81].
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Figure 6: Demonstration of unconventional line states in a photonic Lieb lattice [81].
(A) Schematic illustration of two flat-band NLSs in an infinite Lieb lattice. (B–E) Experimental results of line states in a finite Lieb lattice with 
bearded edge. (B1) Out-of-phase input line beam. (B2) Out-of-phase output without the lattice. (B3) Out-of-phase output through the lattice. 
(B4) Measured k-space spectrum of (B3), with a dashed square marking the first BZ. (C1–C4) The same as in (B1–B4) but the line beam is 
in-phase. (D, E) Numerical simulation results showing the out-of-phase line beam remains intact but the in-phase line deteriorates after 
propagating a long distance through the lattice.

L. Tang et al.: Photonic flat-band lattices and unconventional light localization 1169



Different from the Lieb lattice, where the flat-band 
touches the BZ edge, there are also flat-band lattices where 
the flat-band touching emerges at other high-symmetry 
points such as the sHCLs. sHCL was first studied more than 
two decades ago in the context of electronic systems [95, 
115]. Recently Dirac cones and conical diffraction in such 
superlattices were also theoretically investigated [104, 
116, 117] in cold atoms and optics, but experimental study 
is lacking because of the difficulty in constructing such 
sophisticated lattices. sHCL has five lattice sites (a–e) per 
unit cell, as shown in Figure 7A, and its tight-binding band 
structure consists of five bands, including a completely flat-
band touching two dispersive conical bands at the center 
(Γ point) of the first BZ, which resembles the pseudospin-1 
Dirac cone in the Lieb lattice. Interestingly, there are also 
additional graphene-like pseudospin-1/2 Dirac cones at the 
BZ corners in Figure 7B. Because the flat-band touches 
the BZ center, there are also NLSs in sHCLs. According to 
the geometry of sHCLs, there are two different types of line 
states in finite lattices with specially tailored boundaries, 
which manifest as the NLSs in infinite flat-band systems: 
straight line states along the x-direction and the zigzag 
line states along the y-direction, as shown in Figure 7C,D. 

Typical experimental results of the zigzag line states in a 
cw-laser-written finite sHCL with bearded edges are shown 
in Figure 7E–H. To excite the zigzag line state, the probe 
beam is shaped into the zigzag pattern and launched into 
the lattice vertically (see Figure 7E in which the white rec-
tangle marks the input position). One clearly finds that 
only the out-of-phase beam can evolve into a flat-band 
zigzag line state with a localized intensity pattern (Figure 
7F3) after exiting the lattice. It is worth mentioning that 
the zigzag line states realized here do not exist in either 
the Lieb or the Kagome lattices, which are unique because 
of the special geometry of sHCLs. More interestingly, the 
k-space spectra of the two line states reside in the higher 
order BZ and occupy the higher order BZ centers where 
the flat-band touches the dispersive bands (Figure 7H), 
which is also different from that in Lieb lattices (for which 
the band-touching is at the corners of the BZ). In addition, 
sHCL has a geometrical structure in real space that is dif-
ferent from that of the Lieb lattice. These differences make 
the distinct properties of the line states in sHCL, e.g. the 
zigzag line states that are absent in the Lieb lattice. These 
results again confirm that the line states are related to the 
flat-band touching the dispersive bands.

A
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Figure 7: Demonstration of unconventional line states in a finite photonic sHCL with bearded edges [85].
(A) Schematic of sHCL structure consisting of five sites (a–e) shown in dark-dashed square, with a flat-band mode (the CLS) shown in red-
dashed square. Sites with zero amplitudes are denoted by gray color, and those with nonzero amplitudes of opposite phase are denoted by 
red and black colors. (B) Calculated band structure based on the tight-binding model. (C, D) sHCL with two different cutting boundaries that 
support (C) a “straight” line along x direction and (D) a “zigzag” line along y-direction. Red and black colors represent opposite phase.  
(E) The cw-laser-written sHCL. The white dashed line marks the position of the probe beam. (F) From left to right: (F1) the input of the out-of-
phase probe beam, (F2) output without the lattice, (F3) output through the lattice, and (F4) simulated version of (F3). (G) Setup is as in (F) but 
with an in-phase probe. (H) Momentum space spectrum of (F3), where the dashed lines outline the first and second BZs.
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6  �Noncontractible loop states 
in Kagome lattices

As mentioned above, in finite Lieb or sHCL lattices, the 
straight or zigzag line states can be preserved under appro-
priately chosen boundaries. It is natural to ask whether 
this behavior is universal to all singular flat-band lattices. 
In fact, this is not always the case. Taking the Kagome lat-
tices as an example, although these lattices have been the 
focus of numerous studies [24, 52, 105, 118–121], the NLSs 
originally proposed have never been realized in the 
Kagome lattices, as it is not feasible to generate an infi-
nite lattice or a torus lattice in experiments. For NLSs in  
the Kagome lattices, the initial research started with 
the line states in a truncated system, because Lieb and 
Kagome photonic lattices are both singular flat-band 
systems [93]. However, it was found that the line states 
in finite Kagome lattices are not stable, as their energy 
can easily dissipate into the bulk [86]. Further theoretical 
analysis revealed that the line states cannot preserve in 
truncated Kagome lattices, as a straight-line state cannot 
be the flat-band eigenmode regardless of the lattice edges, 
in sharp contrast to the case of Lieb lattices [81].

The experiments by Ma et al. [86] tackled the above 
problem in two ways. On one hand, they realized the 
robust boundary modes (RBMs) spanning the whole 
boundary of the finite lattice, as proposed already in Ref. 
[93]. The boundary modes arising from the NLSs are robust 
against perturbation and even possess the self-healing 
feature during propagation due to bulk-edge correspond-
ence. On the other hand, a torus geometry with periodici-
ties is difficult to be realized in real systems, but one can 
still preserve the periodicity at least along one direction 
by using a lattice with an annular (also known as Corbino) 
geometry. So they fabricated a Corbino-geometry Kagome 
lattice, and thereby directly observed the NLSs. We note 
that the Corbino geometry has well-known applications in 
physics [122–124], such as in the design of graphene het-
erostructures for detecting fractional quantum Hall states 
or superconducting waveguides for illustrating circuit 
quantum electrodynamics.

In Figure 8, the two alternative approaches are shown 
to reveal the NLSs. Two NLSs are shown in Figure 8A in 
an infinite Kagome photonic lattice and in Figure 8B on 
a torus. An RBM can be considered as a combination of 
the NLSs by cutting the torus in both toroidal and poloidal 
directions [93]. They create a space with four sides open as 
if it was a torus generated by truncation. If there are two 
pairs of NLSs on the torus (one in toroidal and the other in 
poloidal directions), then by cutting the torus along these 

directions one can expand it into a finite-sized lattice with 
four sides open. Then the state existing at the edge of 
finite size will be the superposition state of the four NLSs 
(Figure 8C). To observe this boundary mode, an input 
probe beam is shaped into a necklace of parallelogram 
shape with opposite phase. When such a probe beam is 
launched into the lattice boundary, we see clearly that the 
probe beam is preserved after passing through the lattice 
(Figure 8E1). The energy of the boundary mode couples 
into other sites out of the loop (Figure 8E2) if the neigh-
boring sites are in-phase. As such, Kagome lattices with 
desired “cutting” edges can support RBMs, as an indirect 
illustration of the NLSs due to bulk-edge correspondence. 
Such RBMs also can be preserved during propagation in 
case of superposition with other modes, and possess “self-
healing” features against perturbation in either the initial 
phase or amplitude [86].

Another more direct method to demonstrate NLSs is 
also shown in Figure 8, which is light localization for the 
NLSs in the Corbino-shaped photonic Kagome lattice. As 
illustrated in Figure 8D, with this lattice geometry one 
can realize the NLS along the toroidal direction, akin to 
an infinite system in one dimension. For this geometry, 
the distances between B and C sublattices are equivalent 
over each ring but increase with the ring diameter; the dis-
tances between A and B (or C) sublattices are also equal 
but these distances within and outside the ring are not 
dependent. Such a lattice is generated with site-by-site 
laser writing in a nonlinear crystal, and a typical written 
lattice is shown in Figure 8F1. Then, a ring-shaped neck-
lace pattern under out-of-phase condition is launched to 
excite the NLS depicted in Figure 8D. The corresponding 
experimental results are shown in Figure 8F2, where one 
can clearly see that the necklace beam remains intact 
after 10 mm of propagation, as also verified by numerical 
simulations to even longer propagation distances (Figure 
8F3,F4). If the input necklace beam does not have the 
required alternating phase, it is strongly distorted during 
propagation since such an input cannot evolve into the 
NLS. Therefore, these results represent the first demon-
stration of the NLS originally proposed for the infinite 
system in Kagome lattices as a direct manifestation of the 
real-space topology [86, 92, 93].

7  �Summary and outlook
We have presented a brief overview of the recent experi-
mental advances of light localization in 1D and 2D engi-
neered flat-band photonic lattices, with an emphasis on 
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the optical induction technique and unconventional flat-
band states. Using optical induction, we have designed 
and realized photonic lattices with a variety of shapes and 
boundaries, such as Lieb lattices, Kagome lattices, super-
honeycomb lattices, and rhombic lattices. The fine-tuned 
photonic structures can be established with the adjust-
ment of lattice period, intensity and phase of the writing 
beam, and nonlinearity. Based on these flat-band micro-
structured photonic platforms, we have demonstrated a 
variety of linearly localized states, such as the fundamen-
tal CLSs and the unconventional line states. The concept 
and techniques presented here could be developed for 
applications in other structured photonic media, such as 
photonic crystals and photonic crystal fibers. For example, 
such schemes could be used to make optical fibers with 

particular modal properties, or microscopic optical cavi-
ties if propagation in the third dimension can be blocked 
in a convincing way.

Before concluding, we briefly comment on a few 
notable directions related to flat-band phenomena 
pursued in other platforms. For instance, in flat-band 
topology, topological corner states have been realized in 
photonic Kagome lattices by El Hassan’s group [55]. This 
kind of corner modes relies on crystalline symmetries 
[125–127] and can be viewed as a variant of crystalline 
topological insulators [128]. Such simple and conveni-
ent means of implementation, in contrast to the much 
more complex designs with helical optical waveguides 
[62], drastically enhance the prospects of incorporating 
these ideas in photonic technological devices. Similar 

Figure 8: Demonstration of unconventional loop states in a photonic Kagome lattice [86].
(A) Illustration of two NLSs in an infinitely extended Kagome lattice. (B) Illustration of two NLSs winding around a torus, mimicking the 
2D infinite lattice. (C) An RBM (orange loop) in a finite Kagome lattice with flat cutting edges. (D) Schematic diagram of a Corbino-shaped 
Kagome lattice, where the NLS is illustrated by the orange circle. In all figures, black sites are of zero amplitude, while the blue and red 
ones distinguish nonzero sites with opposite phases. (E) From left to right: (E1, E2) Experimental results of the RBM under out-of-phase 
and in-phase condition; (E3, E4) Simulation result corresponding to (E1, E2) but for a much longer propagation distance (40 mm). (F) 
Experimental realization of the Corbino-geometry lattice (F1) corresponding to (D), along with demonstration of the NLS in experiment (F2) 
and simulations after propagation distance of 10 mm (F3) and 40 mm (F4) under out-of-phase excitation condition. Insets are from input ring 
necklace of the probe beam.
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corner modes have also been explored in acoustic met-
amaterials [129, 130] and microwave circuits [131]. The 
report by Lim et  al. [132] demonstrated that continuous 
transformations between Lieb and Kagome lattices are 
accompanied by the motion of Dirac point degeneracies 
through the Brilllouin zone. The successful implemen-
tation of 2D photonic Moiré lattices by Ye’s group [133] 
made it possible to realize the exciting characteristics of 
the “magic” twist angles (not merely in the field of light 
localization), and the existence of flat-bands at certain 
angles is the physical and fundamental physical origin of 
Mott insulators [16–18]. Moiré lattices may manifest as an 
almost arbitrary geometry that is consistent with the crys-
tallographic symmetry groups of the sublattices, which 
provide a powerful tool for controlling the flow of light. 
Structured microcavities forming lattices for exciton-
polaritons have been used to observe nonlinear localized 
modes in flat-bands [134] and the generation of flat-bands 
using strain [135]. In contrast to the above platforms, 
circuit quantum electrodynamics, which is not limited to 
planar Euclidean lattice geometries, was recently used to 
realize a variety of lattices including flat-band lattices on 
the hyperbolic space [123].

In summary, the study of artificial photonic flat-band 
lattices and flat-band states has provided and will con-
tinue to provide insights into understanding fundamen-
tal concepts and phenomena in interdisciplinary areas 
such as condensed matter physics, materials science, cold 
atoms, metamaterials, and photonics, which may also 
lead to new techniques to control the flow of light and to 
develop novel photonic devices.
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