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Spontaneous diametric-drive acceleration
initiated by a single beam in a photonic lattice
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We demonstrate that a single Gaussian-like beam can self-
bend during nonlinear propagation in a uniform photonic
lattice. The two components of the beam experiencing nor-
mal and anomalous diffractions spontaneously separate
and form a pair in a diametric-drive acceleration due to
nonlinear action. Such a diametric drive generally describes
a jointly accelerating behavior of two beams analogous to
positive- and negative-mass objects. The influences of the
initial momentum of the input beam and the nonlinear
strength are considered in this process. We further realize a
self-bending propagation for a partially coherent light beam
and discuss the impact of incoherence on the acceleration
strength. © 2020 Optical Society of America
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Photonic lattices, periodically arranged and evanescently cou-
pled waveguides, offer a versatile platform for shaping light
propagations [1]. They bring about fruitful diffraction rela-
tionships giving birth to new control degrees of freedom that
otherwise cannot be achieved in homogeneous media. To steer
or switch a light beam in such optical structures, additional
modulations have been widely employed since, in general, the
momentum of an optical beam cannot be altered in a uniform
lattice. A transverse “force” experienced by a light beam can be
produced by properly chirping the waveguide width or the lat-
tice spacing [2,3], by engineering the longitudinal modulation
[4], or even by simply introducing some defects [5], to name
just a few examples. These fixed structures face difficulties or
limitations in achieving a tunable steering. To tune the trans-
verse force, a temperature gradient across the lattice is employed
via the thermal-optical effect [6,7], but this approach involves
increased complexity of the device.

Alternatively, nonlinearity embedded in photonic lattices
offers a flexible way for beam steering. An optical beam can
be attracted or repelled by another one [8,9]. One can merely
employ the phase or the spacing between them to switch the sign
of the interaction force. Straightforwardly, optical power, which
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can tune the nonlinear strength, is also routinely employed
for the control of beam steering [10—12]. Quite recently, we
demonstrated that two light beams can experience a jointly
self-bending propagation in a uniform lattice [13], leading to a
steering functionality that can only be realized in a non-uniform
structure. Such a phenomenon, namely, diametric-drive accel-
eration, initially proposed in the temporal domain [14,15], is
analogous to the interaction between positive- and negative-
mass objects that break the action-reaction symmetry. It differs
not only from the dynamics of linear self-accelerating beams
whose “center of mass” evolves along a straight line [16], but also
from their interactions [17] where action-reaction symmetry
persists. Diametric-drive acceleration was also investigated
recently in other physical systems [18,19] or in a coherent
configuration [20] triggered by the counterintuitive dynamics
brought by negative mass [21]. To realize a jointly accelerating
propagation in a photonic lattice, the pattern of the two input
beams should be properly designed aiming to match the lattice
modes in the normal and anomalous diffraction regions. One
may wonder if this mechanism enables an optical steering in a
simpler manner, for instance, with a single-beam excitation.

In this Letter, we demonstrate that a single Gaussian-like
beam can self-bend under the action of a nonlinearity in a
uniform lattice. The constituting components of the beam
experiencing diffractions of opposite signs undergo a separation
and then form a pair of diametric-drive acceleration during non-
linear propagation. The acceleration strength can be tuned by
the initial momentum of the input beam and the nonlinearity.
Furthermore, we find that the spontaneous bending is possible
in the framework of partially coherent propagation, where
the acceleration strength is still appreciable, even for a modest
degree of incoherence.

In a photonic lattice, normal and anomalous diffractions
co-exist in the same transmission band (i.e., Bloch band),
where they are separated by the zero-diffraction point. A typ-
ical diffraction relationship (propagation constant B versus
transverse wave vector 4, ) for a one-dimensional (1D) lattice is
schematically shown in Fig. 1(a). A single beam, launched near
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Fig. 1.  (a) Schematic spectrum evolution (along the z direction)
of a probe beam launched at a zero-diffraction point of a Bloch band
(where the normal and anomalous diffraction regions are distinguished
by blue and orange colors) during a spontaneous diametric-drive accel-
eration. The spectral components (denoted by red and blue spheres)
experiencing different types of diffraction are expected to move along
opposite directions. (b) Rectilinear propagation (left) in the absence
of a nonlinearity and the diametric-drive acceleration (right) in a
photonic lattice. (c) Phase pattern (upper panel, obtained by wrapping
a vertically gradient phase between 0 and 277) loaded onto an SLM for
generating a Gaussian-like beam (bottom panel). (d) Captured linear
and nonlinear output beam patterns.
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the zero-diffraction point, can excite both diffraction regions
[Fig. 1(a)], thereby providing the ingredients for an analogous
diametric-drive acceleration. Even if the initial spectrum locates
in a single diffraction region, the other region is also accessible
by means of self-phase modulation that enables a spatial spectral
broadening. In real space, we expect that the probe beam spon-
taneously bends under the action of a nonlinearity [Fig. 1(b)].
Such a feature is characterized by the movement of the out-
put beam pattern from the linear to the nonlinear evolution.
Meanwhile, the spatial spectra for the two outputs are compared
to examine the momentum change brought by the acceleration.
As shown in previous work, the two components experiencing
normal and anomalous diffractions tend to move along opposite
directions in the momentum space during interaction [13].

Our experiments are carried out in a 1D photonic lattice
(with a lattice constant of A =6.8 um) that is fabricated by
titanium in-diffusion in a nonlinear photovoltaic copper-doped
lithium niobate crystal (LiNbO3). The associated setup is sim-
ilar to that in Ref. [20]. A vertically orientated stripe beam is
focused by means of a 10 x objective to probe this periodic opti-
cal structure. The stripe beam is picked out from a broad beam
illuminating a programmable spatial light modulator (SLM)
imposed with a phase pattern shown in Fig. 1(c), and is further
delivered to the front focal plane of the objective through a4— f'
system. Consequently, the beam at the input facet of the sample
is a horizontally elongated Gaussian-like beam [Fig. 1(c)] cover-
ing several lattice sites. The tilting angle of the beam relative to
the waveguide is readily controlled by shifting the phase pattern
on the SLM horizontally.

In the first experiment, a tilting probe beam with a
momentum about ¢ =—0.757/A is employed, close to
a zero-diffraction point of the first Bloch band in the first
Brillouin zone (BZ). Figure 1(d) presents the measured output
beam exiting from a linear propagation of 1.4 cm distance at a
very low input power. After turning up the input power to 4 W
for generating sufficient self-defocusing nonlinearity [22] in the
LiNbOj crystal, the nonlinear output beam exhibits a rightward
shift. The corresponding outputs are summarized in a 1D con-
figuration in Fig. 2(a) by integrating the beam patterns along
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the y direction. The resulting shift is attributed to the action-
reaction symmetry breaking, where both the components in
the normal and anomalous regions prefer to accelerate along the
same transverse direction during the nonlinear interaction. The
acceleration in turn leads to a momentum change that can be
revealed in the spatial spectrum of the output. Under the action
of the nonlinearity, the spectrum in the linear case splits into two
parts that move towards the center and left boundary of the first
BZ [Fig. 2(b)]. Meanwhile, the right boundary of the first BZ is
excited via the effect of Bragg reflection. Once the momentum
of theinputis reversed (i.e., g = 0.757/ A), the main features of
the captured outputare reversed accordingly (notshown here).

To obtain an insight into our observations, we perform
numerical simulations by employing the 1D nonlinear
Schrédinger equation that models the beam propagation in
aphotonic lattice [22]:
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where ¥ is the complex amplitude of a light, x (or 2) is the
transverse (or longitudinal) coordinate, 4y is the wavenumber
in the vacuum, and 7 is the unperturbed refractive index of the
crystal. The periodic potential associated with the photonic
lattice is approximately modeled by a cos? function with A
being the lattice modulation depth. The nonlinear coefficient is
I =kondys E 0/ 2, where 33 is the electro-optical coefficient,
and E,, is the photovoltaic field. Figures 2(c) and 2(d) present
the numerical outputs by employing the parameters similar
to the experimental conditions. They have a good agreement
with the observations. In a longer distance, the numerical beam
propagation exhibits an obvious self-bending [Fig. 2(¢)]. The
mechanism behind can be understood by further analyzing the
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Fig.2. (a) and (b) Experimental results of linear (red) and nonlinear
(blue) outputs measured in (a) real and (b) momentum spaces for
a probe beam with the initial momentum g = —0.757/A, where
the nonlinear case corresponds to the single-beam induced coberent
diametric-drive acceleration; (c) and (d) numerical results correspond-
ing to (a) and (b); (e) numerical beam propagation corresponding to
(c) for a longer propagation distance (the insets show the components
in the normal and anomalous diffraction regions at z = 0 and 1.4 cm).
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real space evolution of the components experiencing differ-
ent types of diffraction. Initially, the two components overlap
exactly. During the nonlinear interaction, they fail to occupy the
same location. Specifically, under the self-defocusing nonlinear-
ity, the negative index change induced by the component in the
anomalous (normal) diffraction region is able to repel (attract)
the part experiencing the normal (anomalous) diffraction. The
part in the normal diffraction region prefers to stay at only one
side [here the right side as shown in the inset of Fig. 2(e)] of the
other part, since its self-defocusing evolution is asymmetric
near the infection point, where the maximum beam tilting in
the photonic lattice is defined. Consequently, they constitute
a pair similar to that in a coherent diametric-drive acceleration
[20] and move jointly in a self-accelerating manner during the
following propagation.

Next, we examine the influence of the beam tilting on the
spontaneous bending propagation. For this purpose, the initial
momentum of the probe is set to vary from —7 /A to 0, while
the input power is fixed at a constant value (i.e., 4 pW). The
recorded nonlinear outputs in the real and momentum spaces
for different input conditions are stacked in Figs. 3(a) and 3(b),
respectively. The beam center, as calculated by [ x7dx/ [ Idx,
has a considerable rightward shift for 4 ranging between —0.8
and —0.67r/A. In these regions, the spectrum exhibits a split-
ting process similar to that in Fig. 2(b). The components
experiencing normal and anomalous diffractions tend to accel-
erate in the same direction during the nonlinear propagation,
leading to a beam center shift at the output. In contrast, a
single type of diffraction dominates the nonlinear evolution
for ¢ near 0 or —m/A, despite the presence of the spectral
splitting; thus, the beam mainly undergoes a commonly seen
self-defocusing or -focusing propagation [23]. To realize the
maximum acceleration, both components in different diffrac-
tion regions should be properly divided. As inferred from the
results in Fig. 3(b), there should be an optimized tilting for
this task. This is verified by further analyzing the beam center
shift § from the linear to the nonlinear outputs in Fig. 3(a), i.e.,
8§ = CnL — C;, where Cnr, and C; are the beam centers for
the nonlinear and linear outputs, respectively. The optimized
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Fig. 3. (a) Experimentally measured nonlinear outputs in the real

space for various initial momenta of the probe beam. The white and
black diamonds mark the beam centers in the linear and nonlinear
cases, respectively; (b) captured spectral distributions corresponding to
(a); (c) comparison of beam center shifts from experiment [extracted
from (a)] and those from numerical simulations; (d) beam center shift
at the output during a temporal evolution by employing a probe with
g =—0.75m/A. Such a temporal change can be translated into a
change in terms of nonlinear strength (explained in the main text).
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value of ¢ appears at about —0.757 /A [Fig. 3(c)], which also
agrees with the numerical calculations. Furthermore, we employ
this tilt to examine the influence of the nonlinear strength on
the spontaneous diametric-drive acceleration. By fixing the
power value (i.e., 4 wW), the temporal evolution of the output
can be translated into the scenario of increasing the nonlinear
strength, since the nonlinear coefficient is time (7) dependent,
e, I(7) =T[1 — exp(—7/7)], where I'g is the nonlinear
coefhicient for steady states, and 7 is a constant indicating the
buildup time [24]. As time flies, the beam center shift contin-
uously increases until a steady state is reached [Fig. 3(d)]. In
other words, stronger nonlinearity can lead to a larger bending
propagation.

Finally, incoherence is taken into account for studying the
spontaneous diametric-drive acceleration. The coherent degree
appearing in the nonlinear interaction is reduced by altering
the phase pattern imposed on the SLM in a speed much faster
than the nonlinear response of our sample [25]. In detail, 60
phase patterns similar to that in Fig. 1(c), but with an additional
quadratic phase (expressed as ak? where the coefficient o is
different for each pattern) along the horizontal direction, are
cyclically played at a rate of 60 Hz. The value of « varies from
—0.2 to 0.2 with a step of 0.4/59. In general, the coherence
degree of two beams with a time-dependent phase relationship
is characterized via the visibility of their interference fringe
e, V= (Inax — Imin)/ (Imax + Tmin)> where I, and Iy, are
the maximum and minimum time-averaged intensity of the
interference pattern, respectively. We employ this formula to
characterize the coherent degree for the radiations from any two
points on the light wave front at the input. Thus, the visibility V'
of the whole input beam produced from the incoherent super-
position of 60 different Gaussian beams can be calculated by
countingall the pairs of points in the wave front, i.e.,

1 w w
V=— / f v(x1, x2)dx1dxs, )
w= Jo Jo

where w is the width of the calculation window. In this way, V'is
estimated to be 0.9263 for the resulting partially coherent beam
used in our experiment. During measurement, the input beam
was blocked after the steady state of the nonlinear evolution
was reached. The nonlinear output was revisited by unblocking
the same input but with a quite lower intensity (to avoid the
appearance of nonlinear effect), thanks to the dark storage prop-
erty of the photorefractive crystal. Then the partially coherent
output was obtained by overlapping all the 60 output beam
patterns associated with each frame of the movie on the SLM.
Its 1D configurations in both real and momentum spaces are
shown in Figs. 4(a) and 4(b). Akin to the coherent case, the
partially coherent beam experiences a transverse shift, and its
spectrum undergoes a splitting process where the resulting two
components move to opposite directions from the location of
the linear case. Accordingly, the numerical simulation in this
case is performed by rewriting Eq. (1) as [25]
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where ¥; (j =1, 2, ..., 60) is the light field associated with
each frame of the phase movie, and the intensity of the partially
coherent beam is expressed by /=" [¢/;|*/60. As shown in
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Fig. 4. Spontaneous diametric-drive acceleration triggered by a

partially coherent probe beam with ¢ = —0.757/A. (a) and (b) Linear
(red) and nonlinear (blue) outputs measured in the real (a) and
momentum (b) spaces; (c) and (d) numerical results corresponding
to (a) and (b); (e) numerically calculated shift § of the beam center for
various degrees of coherence [characterized by the visibility V defined
by Eq. (2)].

Figs. 4(c) and 4(d), the numerical results are in good accordance
with the measured ones. Furthermore, our simulations pre-
sented in Fig. 4(c) show that the beam center shift decreases as
the coherence is reduced, indicating a weaker diametric-drive
acceleration. However, for a mild incoherence degree (say,
V' > 0.6), the accelerating strength is still considerable.

In conclusion, we have demonstrated the self-bending propa-
gation of a single Gaussian-like beam in a uniform 1D photonic
lattice under a self-defocusing nonlinearity. Such a behavior
originates from the spontaneous separation of the two com-
ponents in the beam that experience diffractions of opposite
signs under the action of the nonlinearity, then satisfying the
condition for synchronized acceleration in a diametric-drive
fashion. We find that there is an optimized tilting angle for the
inputbeam to reach the maximum acceleration. In addition, our
results show that a stronger nonlinearity has a positive impact
on the acceleration strength. Such a spontaneous bending is
further realized for a partially coherent beam, even exhibiting
a considerable acceleration in a weakly incoherent regime.
Compared to the scheme of two-beam excitations [13,20], the
method demonstrated here is much simpler in both design and
experiment for realizing a diametric-drive acceleration. This
work may bring about new possibilities for beam steering and
switching.
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