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ABSTRACT
Dispersive shock waves are fascinating phenomena occurring
when nonlinearity overwhelms linear effects, such as disper-
sion and diffraction. Many features of shock waves are still
under investigation, as the interplay with noninstantaneity in
temporal pulses transmission and nonlocality in spatial beams
propagation. Despite the rich and vast literature on nonlinear
waves in optical Kerr media, spatial dispersive shock waves in
nonlocal materials deserve further attention for their uncon-
ventional properties. Indeed, they have been investigated in
colloidal matter, chemical physics and biophotonics, for sen-
sing and control of extreme phenomena. Here we review the
last developed theoretical models and recent optical experi-
ments on spatial dispersive shock waves in nonlocal media.
Moreover, we discuss observations in novel versatile materials
relevant for soft matter and biology.
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1. Introduction

Dispersive shock waves (DSWs) are rapidly oscillating solutions of hyper-
bolic partial differential equations that contrast the generation of multi-
valued regions through the formation of undular bores [1–12]. This class
of phenomena was investigated in several physical fields, initially in shal-
low water waves [13] and ion-acoustic waves [14], then in oceanography
[15], pulses propagation in photonic fibers [16,17], Bose-Einstein conden-
sates [18–23], quantum liquids [24], photorefractive media [25], plasma
physics [26], viscous fluids [27], and diffracting optical beams [5,28–43].

In 1967 Gardner, Greene, Kruskal, and Miura developed a method to
solve the Korteweg-de Vries (KdV) equation, called inverse scattering
transform (IST) [44]. Among all the equations solvable by IST, which
allowed to find the mathematical formulation of exact solutions of such
nonlinear models, KdV and the nonlinear Schrödinger equation (NLSE)
belong to the case with dispersive regularization of the aforementioned-
multivalued singularity. NLSE is a universal model that describes many
phenomena, in particular, a third-order nonlinear phenomenon in optics:
the Kerr effect [45], a refractive index perturbation linearly scaling with the
light intensity. Kerr effect can be generalized to the nonlocal case when the
nonlinear response in a specific point depends on entire beam transverse
profile. This occurs, e.g., in thermal media [4,11,29,34,46–60]. In these
materials, light propagation is affected by a highly nonlocal Kerr nonli-
nearity, ruled by nonlocal NLSE.

Unfortunately, IST is still of little use for the nonlocal NLSE and other
theoretical approaches must be conceived, despite some recent progress in
2D media [61,62]. For many years, Whitham modulation and hydrody-
namic approximation have predominated in solving the nonlocal NLSE
[2,29]. However, hydrodynamic approximation cannot describe light pro-
pagating beyond the shock point, and two new techniques have been
developed, one coming from nuclear physics, the time asymmetric quan-
tum mechanics (TAQM) [12,63–73], which models the nonlinear wave
intrinsically irreversible propagation as a superposition of decaying reso-
nances, and the wave turbulence theory [33,39,41,74–77], which uses
a statistical interpretation of nonlinear optics.

This review aims to summarize all the current theoretical models to
describe wave breaking of nonlocal NLSE solutions in diffracting optical
beam propagation, and to highlight some of the most recent experimental
observations of DSWs in spatial nonlinear photonics.

After an introductory section about the derivation of nonlocal NLSE in
Section 2, we report the main theoretical approaches and results related to
DSWs. Section 2.1 explains in detail the difference between the wave-
breaking due to local Kerr effect, which causes shock both in phase and
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in intensity, and the one in nonlocal Kerr media, where the beam intensity
follows the phase singularity adiabatically [29]. The most recent theoretical
models of nonlinear wave propagation in highly nonlocal nonlinear media
are treated in Sections 2.2, 2.3. Section 2.2 treats DSWs generated by laser
beams and gives an analytical description of their intrinsic irreversibility,
due to the complexity of the dynamics rather than losses [12]. Section 2.3
illustrates the importance of nonlocality in random dispersive waves non-
linear interaction to produce giant collective incoherent shock waves
[39,41,76].

The second part of the manuscript is a collection of experiments on
DSW generation in thermal media. Section 3 reports observations in
Rhodamine solutions [29]. Output beam intensity profiles in Section 3.1
are modeled by TAQM both in two-dimensional experiments, where
decaying states describe the longitudinal propagation [37,38], and in the
one-dimensional approximation, having the proof that TAQM is an excel-
lent approach also to analyze transverse intensity profiles beyond the shock
point [40]. The interplay of nonlinearity and disorder is illustrated in
Section 3.2. There, observations in Rhodamine with silica spheres [32]
and in silica aerogel [35] exhibit the competition between randomness
and nonlocal Kerr effect. DSW generation processes in chemical [36] and
biological solutions [43] are illustrated in Section 3.3. Last but not least,
Section 3.4 shows recent experiments on the transition from coherent
shocklets to a giant incoherent DSW in a photon fluid, modeled by wave
turbulence theory [39].

2. The nonlocal nonlinear Schrödinger equation

From Maxwell’s equations, considering a region with zero charge, current
and magnetization, we obtain the following electric field wave equation:

� �2Eþ 1
c2
@2
t E ¼ � 1

�0c2
@2
t P; (1)

with E the electric field and P the medium nonlinear polarization [78].
The relation between P and E depends on the material properties.

Including all the nonlinear terms, we have:

P ¼ �0ðχð1ÞEþ χð2ÞEEþ χð3ÞEEEþ . . .Þ ¼ PðLÞ þ PðNLÞ; (2)

where 1þ χð1Þ ¼ n20, n0 is the medium refractive index, χð2Þ and χð3Þ are
tensors denoted as second and third-order susceptibility, respectively.

One must take into account the temporal delay between the instant
when the electric field reaches the medium and the medium response. For
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this reason, this radiation-matter interaction is more properly represented
by the following non-instantaneous superposition of linear and nonlinear
polarization [78]:

P ¼ �0ðχð1Þ � EðtÞ þ χð2Þ � EEðtÞ þ χð3Þ � EEEðtÞ þ . . .Þ ¼ PðLÞ þ PðNLÞ;
(3)

where � is the convolution product:

χðnÞ � E . . .EðtÞ ¼
ðt
�1

dt1

ðt
�1

dt2 . . .

ðt
�1

dtnχ
ðnÞðt � t1; . . .ÞEðR; t1Þ . . .EðR; tnÞ:

If we have a third-order isotropic and centrosymmetric material, the non-
linear polarization is:

PðNLÞðR; tÞ ¼ �0

ðt
�1

dt1

ðt
�1

dt2

ðt
�1

dt3χ
ð3Þðt � t1; t � t2; t

� t3ÞEðR; t1ÞEðR; t2ÞEðR; t3Þ (4)

and the related dielectric tensor changes as:

�new ¼ �þ �2hE � Ei; (5)

where hE � Ei ¼ 1
2 jEj2 is the square of the electric field time average. The final

refractive index causes the Kerr effect [78], a phenomenon that consists of
a perturbation of the medium refractive index, proportional to the field
intensity:

n ¼ ffiffiffiffiffiffiffiffi
�new

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �2hE � Ei

p
� n0 þ n2I; (6)

with I ¼ jEj2 the field intensity and n2 the Kerr coefficient.
The nonlocal Kerr effect is a third-order phenomenon, but the radiation-

matter interaction depends on the whole intensity profile, as occurs in thermal
media. In these materials, when an optical beam propagates, it locally heats the
medium, and the resulting temperature gradient generates a variation of the
density distribution and a refractive index perturbation [29,53,59]:

Δn ¼ @n
@T

� �
0

ΔT; (7)

with @n
@T

� �
0
the thermo-optic coefficient of the sample at the steady-state. It turns

out that the nonlinear response induced at a specific spatial point is carried away
to the surrounding region, and the size of this extended region determines the
range of nonlocality. The heat conduction in optical thermal materials was
termed ‘response with an infinite range of nonlocality’ [51] until 2007, when
A.Minovich et al. [53] proved experimentally and theoretically that the nonlocal
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response of thermal opticalmedia can be accurately described by a localizedwell
function dependent only on the sample geometry, and not on the nature of the
material. This property allows to express the temperature variation, in
a stationary limit, as governed by the following 3D heat equation [29, 46,
51,52,53, 59, 79, 80] with constant boundary conditions (at room temperature):

@2
X þ @2

Y þ @2
Z

� �
ΔTðRÞ ¼ �γjEðRÞj2; (8)

where γ ¼ ðLlossρ0cPDTÞ�1, Lloss is the loss characteristic length, ρ0 is the
material density, cP is the specific heat at constant pressure, DT is the
thermal diffusivity and R ¼ ðX;Y;ZÞ ¼ ðR?;ZÞ. The solution can be writ-
ten as:

ΔTðRÞ ¼
ððð

dZ0dR?0GðR? � R?0;Z � Z0ÞjEðR?0;Z0Þj2; (9)

with GðR?Þ a Green function that depends only on the sample geometry
and the boundary conditions, and expresses the nonlocality of the non-
linear effect. In principle, one can remove the Z-dependence by integrating
along the longitudinal medium length Z0 [53], but we are interested in the
Green function itself, and the longitudinal behavior of G becomes as
complicated as Z0 becomes comparable to Lloss, getting smaller and
strongly asymmetric near the boundaries [59]. Physically, the reason why
this happens is due to the choice of heat equation to describe the nonlinear
radiation–matter interaction: it works only in a neighborhood of the

sample midpoint Ẑ ¼ Z0=2, not in proximity of the borders.
Mathematically, this is deciphered in a longitudinal parabolic approxima-

tion with characteristic width Lnloc ¼
ffiffiffiffiffiffiffiffiffi
jn2j

γ @n
@Tj j0

r
/ ffiffiffiffiffiffiffiffi

Lloss
p

:

ΔTðRÞ ¼ 1� ðZ � ẐÞ2
2Lnloc

" #
ΔT?ðR?Þ: (10)

From Eqs. (8,10) we obtain the 2D heat equation:

@2
X þ @2

Y

� �
ΔT?ðR?Þ � L�2

nlocΔT?ðR?Þ ¼ �γI?ðR?Þ; (11)

with I?ðR?Þ ¼ 1
Z0

ð
dZjEðR?;ZÞj2. Eq. (9) now reads

ΔT?ðR?Þ ¼
ðð

dR?0G?ðR? � R?0ÞI?ðR?0Þ: (12)

In low absorption regime (Z0 < < Lloss) ΔTðRÞ,ΔT?ðR?Þ and @ZIðRÞ,0
(intensity longitudinal changes are negligible as for solitary wave packets);
therefore, we attain n½I�ðRÞ ¼ n0 þ Δn½I�ðR?Þ, with the refractive index
nonlocal perturbation:
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Δn½I�ðR?Þ ¼ n2

ðð
dR?0KðR? � R?0ÞIðR?0Þ; (13)

and n2KðR?Þ ¼ ð@n@T Þ0G?ðR?Þ.
By a comparison between the nonlocality length Lnloc and the beam waist

W0, we can analyze two different limits: the standard Kerr effect in Eq. (6)
when Lnloc � W0 (local approximation), i.e., KðR? � R?0Þ,δðR? � R?0Þ,
and the opposite case Lnloc � W0, that is, the highly nonlocal approximation

(HNA), where K � IðRÞ,KðR?ÞPðZÞ, with PðZÞ ¼
ð
dR?IðRÞ the power.

For a monocromatic field EðR; τÞ ¼ Ê0AðRÞe�iωτ in a third-order ther-
mal medium, in paraxial and slowly varying envelope approximations,
introducing the delayed time τ ¼ t � n0

c Z and adding a linear loss of
characteristic length Lloss, from Eq. (1) we find that the propagation
along Z is ruled by the nonlocal NLSE [29]:

2ik@ZAþ @2
X þ @2

Y

� �
Aþ 2k2

Δn½jAj2�
n0

A ¼ �i
k

Lloss
A; (14)

with k ¼ 2πn0
λ ¼ ωn0

c the wavenumber.

2.1. Spatial dispersive shock waves in nonlocal Kerr nonlinearity

Spatial DSWs are rapidly oscillating waves which regularize an abrupt dis-
continuity in phase through diffraction, that is, through the formation of
intensity undular bores on the beam borders. Scientific community paid close
attention to the theoretical description [1,2,22] and experimental demonstra-
tion [14, 16, 18–21, 26, 27, 29, 30, 33] of optical DSWs. Here we summarize
results on the defocusing DSWs in nonlocal media [29]. In such materials,
the IST cannot describe the solutions, and we need other methods.

In next two sections, we detail two different methodologies for DSWs in
nonlocal media: the TAQM [12,63–73] and the wave turbulence theory
[74,76]. Both theories also prove that DSWs are intrinsically irreversible.

Starting from Eq. (14), through the scaling x ¼ X
W0

, y ¼ Y
W0

, z ¼ Z
L ,

ψðx; y; zÞ ¼ AðX;Y;ZÞffiffiffi
I0

p , with I0 the intensity peak, L ¼ ffiffiffiffiffiffiffiffiffiffi
LnlLd

p
, Lnl ¼ n0

kjn2jI0
the nonlinear length scale associated to a local Kerr effect, Ld ¼ kW2

0 the
diffraction length, one obtains the normalized nonlocal NLSE:

i�@zψ þ �2

2
@2
x þ @2

y

� �
ψ þ χθψ ¼ �i

α

2
�ψ; (15)

with � ¼ Lnl
L ¼

ffiffiffiffi
Lnl
Ld

q
a small quantity in strongly nonlinear (or weakly

diffracting) regime, as the one that we are considering, χ ¼ n2
jn2j ,

θ ¼ kΔnLnl
n0

			 			, α ¼ L
Lloss

. From Eq. (11)
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� σ2 @2
x þ @2

y

� �
θþ θ ¼ jψj2; (16)

where σ ¼ Lnloc
W0

is the nonlocality degree, which expresses the nature of the
Kerr effect through the limits we have previously discussed: if σ � 1 we
are considering the local limit θ,jψj2, instead, if σ � 1, by HNA

θ,κðx; yÞpðzÞ, with pðzÞ ¼
ð
dxdy ψðx; y; zÞj j2 ¼ PðZÞ

W2
0 I0

.

The fundamental laser mode (Gaussian TEM00) is described by an axisym-
metric Gaussian input ψ0ðrÞ ¼ expð�r2Þ, with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, which evolves

in theWKB approximation [81] as ψðr; zÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; zÞp

exp i ϕðr;zÞ�

h i
. ForD ¼ 2

the transverse dimensionality and u ¼ @rϕ the phase chirp, from Eqs. (15, 16)
one obtains

@zρþ D�1
r ρuþ @rðρuÞ


 � ¼ �αρ;
@zuþ u@ru� χ@rθ ¼ 0;

�σ2 @2
r θþ D�1

r @rθÞ

 �þ θ ¼ ρ:

(17)

Figure 1. Phase chirp uðxÞ (a,b), and amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; zÞp

(c,d) for transverse dimensionality
D ¼ 1 and different values of z, as indicated. (a,c) are obtained by Eqs. (18) with �¼ 10�3. (b,
d) are simulations of the result of the system (17) with D ¼ 1; α ¼ 0; χ ¼ �1; σ2 ¼ 5.
Figure reprinted with permission from [29]. Copyright 2007 by the American Physical Society.
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Figure 1 reports phase chirp and field amplitude for D ¼ 1, so for @y,0
and r ! x, in a defocusing medium ðχ ¼ �1Þ without losses ðα ¼ 0Þ. The
local case ðσ ¼ 0Þ is illustrated in Figure 1(a,c) and follows from sys-
tem (17):

@zρþ @xðρuÞ ¼ 0; @zuþ u@xu ¼ �@xρ: (18)

Eqs. (18) are equivalent to Euler and continuity equations, respectively, for
afluid of speedu,mass density ρ andpressure proportional to ρ2. In the reported
dynamics, the diffraction, initially of order �2, starts to play a relevant role in
proximity of the wave breaking. In fact, it regularizes such a discontinuity by
rapid oscillations ofwavelength,�, which appear simultaneously in phase chirp
u and intensity ρ. For large values of σ, the normalized refractive index variation,
here expressed by θðxÞ, is wider than the Gaussian input. As shown in
Figure 1(b,d) the shock oscillations are essentially driven by the phase chirp u,
while the intensity ρ adiabatically follows. Major details are given in [29].

An in-depth description of the difference between DSWs in local and non-
local Kerr media is also provided by turbulence theory, in particular by the
Vlasov formalism, briefly summarized in Section 2.3. The analysis made for
random optical waves in Section 2.3 is also relevant to the coherent problem
considered here, since the reduced hydrodynamic equations derived from the
Vlasov model [39], Eqs. (3,4)] coincide with Eq. (17). Following this approach,

Figure 2. Pictorial representation of an energy landscape. When the system is in the proximity
of a local maximum it obeys the RHO Hamiltonian, in figure ĤRO. In the proximity of the
minimum the system obeys the Hamiltonian of a harmonic oscillator, in figure ĤHO. The two
Hamiltonians are explicitly written in the two the corresponding text boxes, with the related
dynamical systems and the discrete eingenvalues. Insets show the transverse profiles of the
respective eigenfunctions, bounded on right-hand side for the harmonic oscillator,
unbounded on the left-hand side for the RHO.

Reprinted by permission from Macmillan Publishers Ltd. from [38]. Copyright 2015.
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DSWs in thermal nonlinearity were interpreted for the first time as ‘annular
collapse singularities’ in [39]. By looking at the M-shaped field amplitude in
Figure 1d (and, in the following, at the intensity profiles in Figures 4a–6(d,e),
Figures 8(a,b) and 16(b,c)), and comparing this to the fast oscillations in
Figure 1c [or Figure 2 in [30]], the feature of the collapse singularity in
nonlocality appears evident. Indeed, the corresponding hydrodynamic model
in the limit of a local nonlinearity [Eq. (18)] recall the shallow water equations,
which exhibit a pure shock without collapse.

2.2. High nonlocality and time asymmetric quantum mechanics

Let us consider the nonlocal NLSE in Eq. (14) with a medium response
function KðX;YÞ ¼ exp �ðjXj þ jYjÞ=Lnloc½ �=ð2LnlocÞ2. Being K separable,
i.e., KðX;YÞ ¼ ~KðXÞ~KðYÞ, through the approximation @Y,0 (as in the
previous section) we can consider only one transverse dimension, since
analyzing propagation along Y is no more interesting for our purposes. We
rewrite Eq. (14) in terms of 1þ 1 dimensionless variables by using the same
scaling of Eq. (15) and choosing I0 such that Lnl ¼ Ld:

i@zψ þ 1
2
@2
xψ � κ � jψj2ψ ¼ �i

α

2
ψ: (19)

with κðxÞ ¼ W0~KðxW0Þ ¼ exp �jxj=σð Þ=ð2σÞ.
We take into account a medium where the nonlocality length is much

larger than the beam waist. By HNA we have [55,82]

κ � jψj2,κðxÞpðzÞ; (20)

where κ is a function no more depending on jψj2. In a system without loss,
that is, α ¼ 0, the normalized power p is conserved and the NLSE is
mapped into a linear Schrödinger equation i@zψ ¼ Ĥψ, with the
Hamiltonian Ĥ ¼ 1

2p̂
2 þ pκðxÞ p̂ ¼ �i@xð Þ. When we express the even

function κ as its second-order expansion, that is, κðxÞ ¼ κ20 � κ22
2 x

2, where
κ20 ¼ 1

2σ and κ22 ¼ 1ffiffi
π

p
σ2
, we obtain the reversed harmonic oscillator (RHO)

Hamiltonian [68,70,73]:

Ĥ ¼ pκ20 þ ĤRHO; ĤRHO ¼ p̂2

2
� γ2x̂2

2
; γ2 ¼ pκ22: (21)

If ψ ¼ exp �iκ20pz
� �

ϕ, then i@zϕ ¼ ĤRHOϕ.
Figure 2 sketches the relation between the harmonic and the reversed

oscillators. For a harmonic oscillator (HO), the spectrum is discrete and
the corresponding eingenstates form an orthonormal basis (both an ortho-
gonality and a completeness relations hold):
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ĤHO ¼ p̂2

2 þ ω2

2 x̂
2

ĤHOψðxÞ ¼ EψðxÞ; En ¼ ω nþ 1
2

� �
;

ψnðxÞ ¼
ffiffiffi
ω
π

4
p

1ffiffiffiffiffiffi
2nn!

p Hn
ffiffiffiffi
ω

p
xð Þ;

(22)

with HnðxÞ ¼ ð�1Þnx2 dn
dxn e

�x2 the Hermite polynomials. On the other
hand, RHO has complete continuous spectrum, but one derives
a generalized discrete spectrum from HO spectrum by a complex analytic
prolongation in the rigged Hilbert space [67,73,83] through the transfor-
mation ω ! iγ, x̂ ! e�iπ4x̂, p̂ ! ei

π
4p̂ [70,73]. The new stationary

Schrödinger equation is ĤRHOf
	ðxÞ ¼ i Γ2 f

	ðxÞ, solved by the spectrum
Γn
2 ¼ γ nþ 1

2

� �
and the non-normalizable eigenfunctions

f	n ðxÞ ¼
ffiffiffiffiffiffiffiffi	iγ4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nn!

ffiffiffi
π

pp Hnð
ffiffiffiffiffiffiffiffi	iγ

p
xÞ expð
i

γ

2
x2Þ; (23)

namely, the RHO Gamow vectors (GVs) [84,85].
We can express every wavefunction as a truncated superposition of GVs

added to a background function, which dispersively oscillates at infinite as
a polynomials [73]:

ϕðxÞ ¼ ϕG
NðxÞ þ ϕBG

N ðxÞ (24)

with

ϕG
NðxÞ ¼

XN
n¼0

f�n ðxÞhfþn jϕðx; 0Þi: (25)

Figure 3 shows the GV square norms (Figure 3a) and phase chirps (Figure 3b).
The evolution of the normalized field ψ presents a Gamow part resulting as
a superposition of exponential decays with quantized decay rates [73]:

Figure 3. (a) jjf�n ðxÞjj2 in Eq. (23) for increasing even order n; (b) corresponding phase chirps
@xArg f�n ðxÞ


 �
; (c) weights pnð0Þ [Eq. (27)] of the GV expansion of a Gaussian wave packet.

Figure reprinted with permission from [37]. Copyright 2015 by the American Physical Society.
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ψG
n ðx; zÞ ¼

XN
n¼0

hfþn jψðx; 0Þif�n ðxÞe�iκ20pze�
Γn
2 z: (26)

Eq. (26) proves an intrinsical irreversibility of DSWs, where a backward
propagation beyond the shock point is no physically possible because of
the exponentially decaying evolution. This explains why the quantum
representation of wave propagation theory in a rigged Hilbert space is
called TAQM (here time is replaced by z).

In the probabilistic interpretation of TAQM [37], the projection of Eq.
(26) over

ffiffiffiffiffi
Γn

p
fþn gives the probability pnðzÞ of finding the system in

a decaying GV:

Figure 4. (a) Numerical solution of Eq. (19) with p¼ 104 and σ2 ¼ 10; (b) projection on GVs
for increasing order n for α ¼ 0:3 and γ ¼ 8; continuous lines are from Eq. (19), dots are from
Eq. (27); (c) as in panel (b) for γ ¼ 24.

Figure reprinted with permission from [37]. Copyright 2015 by the American Physical
Society.

ADVANCES IN PHYSICS: X 11



pnðzÞ ¼ Γn hfþn
		 		ψðx; 0Þij2e�Γnz; (27)

which gives the z � dependent weight of the n-order GV. Initial weights
pnð0Þ are reported in Figure 3c as functions of γ2. Since a Gaussian beam
ψðx; 0Þ ¼ φðxÞ ¼ expð�x2=2Þ= ffiffiffi

π4
p

is an even input, all the odd terms in
Eq. (26) vanish due to the x� parity. Figure 4a shows the numerical
solution of Eq. (19). Yellow lines give the transverse intensity profile. We
see that these are modeled by a superposition of exponential decays, where
the plateau is given by the groundstate GV, and the peaks are given by
higher-order GVs. Simulations of weights pnðzÞ are in Figure 4(b,c). While
dotted profiles are numerical results from Eq. (27), continuous lines result
from the general projection definition pnðzÞ ¼ Γn hfþn

		 		ψðx; zÞij2, with
ψðx; zÞ numerical solution of Eq. (19).

2.3. Random optical waves and turbulence theory

We have summarized how TAQM describes the intrinsic irreversibility of
DSWs generated by a laser input. We highlight that nonlinear optics offers
other examples of intrinsical irreversibility, as photon fluids, i.e., turbulent
flows of a conservative system of random optical waves, in which the
statistical interpretation has produced significant results [76].

Statistical nonlinear optics is related to wave turbulence theory, whereby
the kinetic wave description provides a thermodynamic treatment of
turbulence [33,39,41,74–76,86–89]. If one considers the nonlinear propa-
gation of incoherent optical waves characterized by fluctuations that are
statistically inhomogeneous in space, DSWs arise only in the strong tur-
bulence (strongly nonlinear) regime [39,41]. The wave breaking emerges
from a turbulent field, whose local-averaged spectrum follows a specific
Vlasov-like kinetic equation, which can be a traditional Vlasov equation
(local nonlinearity), a short-range Vlasov equation (SRVE) (quasi-local
nonlinearity) or a long-range Vlasov equation (LRVE) (highly nonlocal
nonlinearity), derived by the zero-loss NLSE through a multiscale expan-
sion [76]. These Vlasov equations, being reversible kinetic equations, do
not exhibit a H-theorem of entropy growth, and so do not describe the
process of irreversible thermalization to equilibrium. They can be inter-
preted as a mean-field theory that does not explain, by itself, irreversible
processes. For the sake of completeness, we stress that the thermalization
process arises at the next order of a weakly nonlinear expansion procedure.
This analysis leads to a different kind of time asymmetric behavior with
respect to DSWs reported above, because it is not due to strong nonli-
nearity. In this framework, by going to next order, the theory reveals that
the Vlasov equation is corrected by a collision term involving the nonlocal
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interaction. This collision term has a form analogous to the wave turbu-
lence kinetic equation [86] and is written in explicit form in Methods of
[39]. The mathematical statement of such irreversibility relies on the
H-theorem of entropy growth. Wave thermalization can be characterized
by a self-organization process, that is, the system spontaneously generates
a large-scale coherent structure. A remarkable example of this self-
organization process is the wave condensation, whose thermodynamic
equilibrium properties are similar to those of quantum Bose–Einstein
condensates. We stress that nonlocality significantly decelerates the rate
of the thermalization process, in complete analogy with gravitational
systems, where the dynamics of stars are described by a collision-less
(Vlasov-like) equation toward quasi-stationary nonequilibrium states
(e.g., galaxies), which are of fundamental different nature than usual
thermodynamic equilibrium states [90]. A detailed treatise of these phe-
nomena is reported in [39] and in the references therein.

In what follows, we analyze long-range interactions in strongly non-
linear wave systems operating far from thermodynamic equilibrium.
Starting from the NLSE [Eq. (14)], with nonlinearity expressed by Eq.
(13) and no loss, we obtain Eq. (15), here explicitly written as:

i@zψ þ �

2
@2
x þ @2

y

� �
ψ þ χυψU � jψj2 ¼ 0; (28)

with υ ¼ jn2jI0
n0

k
ffiffiffiffiffiffiffiffiffiffi
LnlLd

p
, UðrÞ ¼ W2

0KðW0rÞ, r ¼ ðx; yÞ. From Eq. (28), we
want to attain a kinetic equation, that is, an equation describing the
evolution of the spectrum during the related field propagation in the
nonlinear medium. The structure of a kinetic equation depends on the
statistics of the random wave. For this reason, we consider the field
autocorrelation function:

Bðr; �; zÞ ¼ hψðrþ 1
2 �; zÞψ�ðr� 1

2 �; zÞi; r ¼ ðr1 þ r2Þ=2; � ¼ r1 � r2:

(29)

The statistics is said to be homogeneous if B depends only on the distance
jr1 � r2j. Following Eq. (28):

i@zBðr; �; zÞ þ ��r � ��Bðr; �; zÞ þ χυ Pðr; �; zÞ � Qðr; �; zÞ½ � ¼ 0; (30)

with
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Pðr; �; zÞ ¼ Bðr; �; zÞ
ð
dr0Uðr0Þ Nðr� r0 þ 1

2
�; zÞ � Nðr� r0 � 1

2
�; zÞ

� 
;

Qðr; �; zÞ ¼
ð
dr0Uðr0Þ Bðr� 1

2
r0 þ 1

2
�; r0; zÞBðr� 1

2
r0; � � r0; zÞ

�

þ� Bðr� 1
2
r0; � þ r0; zÞBðr� 1

2
r0 � 1

2
�;�r0; zÞ


;

Nðr; zÞ ¼ Bðr; � ¼ 0; zÞ ¼ hjψj2iðr; zÞ:
(31)

In the last equation,N is the averaged field power, also depending on r because
of the inhomogeneity of the statistics. By defining the length scale of random
fluctuations as the coherence length λc andW0 the incoherent beam waist, we
can assume that the statistics is quasi-homogeneous if �c ¼ λc=W0 < < 1. For

a Gaussian response function UðrÞ ¼ 1
2πσ2 exp � jrj2

2σ2

� �
, we get the SRVE if

σ < < 1 and the LRVE if σ > > 1 through two different multiscale expansions
with respect to �c:

@znkðr; zÞ þ �k~ωkðr; zÞ � �rnkðr; zÞ � �r~ωkðr; zÞ � �knkðr; zÞ ¼ 0; (32)

for the local spectrum nkðr; zÞ ¼
ð
d�Bðr; �; zÞ expð�ik � �Þ, with averaged

power Nðr; zÞ ¼ 1
ð2πÞ2

ð
dknkðr; zÞ. The nonlocal features of Eq. (32) are

traced by the generalized dispersion relation. Once defined the Fourier

transform of the response function ~UðkÞ ¼
ð
drUðr; zÞ expð�ik � rÞ, for the

LRTE:

~ωkðr; zÞ ¼ ωðkÞ þ Vðr; zÞ;
ωðkÞ ¼ �

2
jkj2;

Vðr; zÞ ¼ �χυ

ð
dr0Uðr� r0ÞNðr0; zÞ:

(33)

One can also compute the momentum both from the NLSE and the LRVE:

pNLSEðr; zÞ ¼ ð2πÞ2= ψ��ψð Þ=Nðr; zÞ;

pLRVEðr; zÞ ¼
ð
dknkðr; zÞk=Nðr; zÞ:

(34)

Major details are given in [76].
By increasing the range of the nonlocality, we pass from a stage where the

field evolution is ruled by stochastic generation of small-scale DSW structures,
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naturally denoted as dispersive shocklets, to the emergence of an unexpected
global collective behavior. The latter phenomenon is characterized by a strong
non-homogeneous redistribution of the spatial fluctuations, whose descrip-
tion is provided by the NLSE and the LRVE, and unveils the formation of
a giant shock singularity. From theoretical analysis [41], it turns out that – in
the short-range regime – wave breaking occurs at random positions in the
turbulent field, predominantly around high-amplitude fluctuations, leading to
a gas of coherent dispersive shocklets in the midst of turbulent fluctuations.
On the other hand, for highly nonlocal Kerr samples, the regularization of the
global incoherent shock does not require the formation of a regular oscillating
DSW structure because the self-organization of the turbulent waves ensemble
makes the field oscillate as a whole. Themomentum of the speckled beam [Eq.
(33)] is radially outgoing and exhibits a shock-like singularity, while the
envelope of the intensity of the beam experiences a ring-shaped collapse-like
behavior. The fluctuations of the incoherent wave then result to be pushed
towards the annular shock front, which leaves behind itself an internal region
of the beam with a high degree of coherence. In other terms, the dynamics is
featured by a dramatic degradation of the coherence properties on the annular
boundary of the beam, while its internal region exhibits a significant coher-
ence enhancement. Experimental observations of incoherent DSWs are
reported in Section 3.4, together with related numerical simulations.

This alternation between coherence degradation on the boundaries and
relative enhancement on the internal region also emerges in the spectro-
grams achievable by LRVE simulations. It turns out that, as the pump
power increases, the spectrogram is affected by a Z-shaped distortion: the
coherence length λc,Δk�1 decreases at shock front (Δkshock determines the
boundaries of the admitted k values), and it increases in the internal region
of the beam. This dynamics is conservative but irreversible, because the
non-equilibrium thermodynamic condition is stabilized by an irreversible
self-organization of the random waves. Indeed, in [77] authors showed that
a spontaneous long-range phase coherence emerges among incoherent
waves in nonlocal nonlinearity, when the speckles self-organize into giant
collective waves. Their theory reveals that this phenomenon constitutes
a generic property of a conservative (Hamiltonian) system of highly non-
local random waves that evolve in a strongly nonlinear regime. Moreover,
the field exhibits intensity fluctuations whose coherence length increases
dramatically during the evolution of the system.

3. Experimental observations in thermal media

Shock waves described by Eq. (14) have been originally shown in an
experiment from [29]. The sample is a cell of length 1 mm filled with an
aqueous solution of rhodamine B (RhB), with a concentration of 0.6mM.
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Measurements of the shock profiles are in Figure 5. A Gaussian CW laser
beam of intensity waist W0 ¼ 20μm, at wavelength λ ¼ 532nm, propagates
in a material with linear refractive index n0 ¼ 1:3, defocusing Kerr coeffi-
cient n2 ¼ �7� 10�7cm2W�1, loss length L�1

loss ¼ 62cm�1. For water
DT ¼ 1:5� 10�7m2s�1, ρ0¼ 103kg m�3, cp ¼ 4� 103J kg�1K�1,
@n
@T

		 		
0
¼ 10�4K�1. The degree of nonlocality is estimated as σ ¼ 0:3.

Figure 5. Experimental transverse intensity profiles of an initial Gaussian beam propagating in
a thermal medium. Measurements are performed for varying input power P ¼ πW2

0 I0. Insets
show the 2D output patterns.

Figure reprinted with permission from [29]. Copyright 2007 by the American Physical Society.

Figure 6. (a) Experimental setup. Authors of [38,40] collected the transmitted and fluores-
cence images of the laser beam propagating in RhB samples. Two types of launching lenses
L1 were used: a cylindrical and a spherical, for the 1D and 2D experiments, respectively. The
top fluorescence image of the propagating beam was collected by a microscope placed above
the RhB samples. The second lens is spherical and was used to collect the transverse output
profile. (b, c) Top-view intensity distribution as obtained from 2D experiment (b) and
numerical simulations (c). Respectively experimental (d) and numerical (e) sections of the
images (b) and (c) taken at z ¼ 0:2 (red), 0.6 (green) and 0.9 mm (blue).

Reprinted by permission from Macmillan Publishers Ltd. from [38]. Copyright 2015.
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The beam exhibits, beyond the shock point, the formation of undular
bores moving outward with increasing power. The next subsections report
different experiments exhibiting DSWs in nonlocal samples.

3.1. Rhodamine and time asymmetric quantum mechanics interpretation

In this section we report two experiments in order to validate the presence
of GVs in DSWs: a 2D propagation pattern to observe GVs decay rates Γn
[38], and a 1D experiment to show that GVs describe also the M-shaped
profile in the far-field of a DSW in HNA [40], in [39] identified for the first
time as collapse singularity. These are validations of TAQM in describing
DSW propagation.

The experimental setup is illustrated in Figure 6a. Samples are prepared
by dispersing 0.1mM of RhB in water. The solution is placed in a cuvette
1 mm thick in the propagation direction. The measured defocusing Kerr
coefficient is jn2j ¼ 2� 10�12m2W�1 and the absorption length is
Lloss ’ 1:6mm at the laser wavelength 532nm [32]. The CW laser beam is
focused through a lens into a sample. Light is collected by a spherical lens
and a Charged Coupled Device (CCD) camera. A microscope is placed
above the sample in order to capture top-view images of the laser beam
along the propagation direction Z. The difference between the two experi-
mental apparatus is the choice of the first lens (L1). In the 2D experiment
[38], L1 is spherical with focal length 10 cm, and a focus spot size of
10μm. The setup was placed having the beam propagating vertically
through the sample, reducing thermal convection in the water. In the 1D
experiment [40], authors used a cylindrical lens as L1, with focal length
f ¼ 20cm in order to mimic a nearly one-dimensional propagation. Being
Z the propagation direction, the lens focuses the beam in the X direction.
The input spot dimension is 1:0mm in the Y direction and 35μm in the X
direction. These geometrical features make the one-dimensional approx-
imation valid and allow us to compare experimental results with the
theoretical one-dimensional model. The diffraction length in the X direc-
tion is Ld ¼ 3:0mm. This time, the setup was placed horizontally.

Figure 6(b,c) reports the observed laser beam propagation top-view,
detected by a microscope through RhB fluorescence, and the numerical
calculation from the NLSE, respectively. The beam displays the character-
istic strongly defocusing and the M-shaped behavior, also evident in the
transverse sections of the intensity in Figure 6(d,e). These are signatures of
DSWs in nonlinear media at high power.

Decay rates in Figure 7 are detected by slicing the intensity profile
IðX;ZÞ at X ’ 0:1mm (yellow line in Figure 6b) and fitting the intensity
versus Z with two exponential functions. Different power levels exhibit
very different dynamics. The presence of double-exponential decays, that
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is, the superposition of the first two GVs, is more evident at high power.
It was observed and calculated that double-exponential decay dynamics
obeys the quantized spectrum scaling Γ2=Γ0 ¼ 5 at all investigated power
levels, as shown in Figure 7d. This demonstrates that authors of [38]
excited the fundamental state f�0 and the first excited state f�2 . Odd states
are not excited, as expected from Gaussian TEM00 x� parity. Each of
the two rates has a square root dependence on P, signature of the
underlying nonlinearity. This power dependence distinguishes RHO
dynamics from linear loss, due to absorption and scattering.

The RHO eigenstates are quasi-eigenstates of the Fourier transform
operator, which in optics represents the far-field. Let us consider the
RHO Hamiltonian in the momentum basis (p̂ ! p and x̂ ! i@p)

ĤRHOðp; i@pÞ ¼ p2

2
þ 1
2
γ2@2

p ¼ �ĤRHOð�i@x; xÞ: (35)

Pure GVs are unfeasible to describe a physical experiment, because one cannot
neglect that GVs have an infinite support, i.e., the x-region where the

Figure 7. (a) Observed intensity decay at different laser powers, obtained by slicing along
X ’ 0:1mm the top-view intensity distribution the propagation direction (see the yellow line
in Figure 6b). (b) Numerically calculated decays in the conditions of panel A. (c) Peak region of
the experimental curve at P ¼ 450mW. The superposition of the first two exponential decays
unveils the presence of two GVs, the fundamental state, n ¼ 0 (slowly decaying) and the first
excited state, n ¼ 2 (fastly decaying). (d) Decay rates vs P for the fundamental state, Γ0 (filled
circles) and the excited state, Γ2, (triangles).

Reprinted by permission from Macmillan Publishers Ltd. from [38]. Copyright 2015.
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eigenfunction is not null, is not finite. In order to account for the spatial
confinement of the experiment, authors of [40] introduced the windowed GVs:

ϕW
G ðxÞ ¼

XN
n¼0

ffiffiffiffiffi
Γn

p
f�n hfþn jψðx; 0Þi rectWðxÞ; (36)

where

rectWðxÞ ¼ 0 for jxj � W
1 for jxj<W

�
;

with W is the finite size of the physical system. During the evolution, the
Gamow ground state has the lowest decay rate, i.e., γ=2. This allows to

Figure 8. (a, b) CCD image of the light beam at laser powers P ¼ 2W and 4W, respectively;
the bottom panels show the normalized intensity profile at the maximum waist along Y ¼ 0.
(c) Analytical solution obtained by Eq. (37) changing Gaussianly the power P in the y direction.
(d) As in (c) but for higher powers; the bottom panels show the slice of panel (c) and (d) at
y ¼ 0, i.e., Eq. (37) square modulus for W ¼ 1:5 and γ ’ 12 and γ ’ 40, respectively. (e) Log-
scale normalized intensity as a function of power, as obtained by slicing along Y a region in
panel (b). The slopes of the straight lines give the GV decay rates (γ1 ¼ �8	 0:4 and
γ2 ¼ �1:6	 0:1). Their quantized ratio is 5:0	 0:4 as expected from theory [37]. (f)
Intensity oscillations for different power values. (g) Measured oscillations period T as
a function of power; continuous line is the fit function T / ffiffiffi

P4
p

, as expected by the theory;
the inset shows the same curve of (g) with P1=4 as abscissa axis.

Reprinted with permission from [40]. Copyright 2016 Optical Society of America.
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consider, in the long-term evolution, only the fundamental GV, and so
only the Fourier transform F of the fundamental state of Eq. (36):

ψ
~ ðkxÞ ¼ F f�;W

0 ðxÞ� ¼

¼ 1

4
þ i
4

� �
e�

ikx2
2γ
ð�iγπÞ1=4

W
� �Erf

1
2 � i

2

� �ðkx �WγÞffiffiffi
γ

p
� 

þ Erf
ð12 � i

2Þðkx þWγÞffiffiffi
γ

p
� � �

:

(37)

Eq. (37) provides an analytical expression of the far-field, which is compared
below with the experiments. Indeed, Eq. (37) allows to predict in closed form
the typical M-shaped shock profile: it describes the internal undular bores and
the correct scaling of the undulation period with respect to the power, i.e., the
period T is predicted to scale with the square root of γ, and hence with the
fourth square root of the beam input power.

Figure 8 reports experimental results in RhB, through the previously
described setup, and the comparison with the numerical results. Images of the
beam in the far-field (corresponding to the square modulus of the spatial
intensity Fourier transform) for different input powers were collected and
shown in Figure 8(a,b). For low power (not reported) the elliptical beam profile
remains Gaussian along propagation. A different phenomenon occurs while
increasing the power: the beam transverse section along X broadens and devel-
ops intensity peaks on its lateral edges. Essentially, it becomes M-shaped. These
results are in remarkable agreement with Eq. (37), as shown in Figure 8(c,d).

Different positions in the Y direction correspond to different power levels.

Any power level furnishes a different value of γ, being γ ¼
ffiffiffiffiffiffiffiffi
pffiffi
π

p
σ2

q
. The

Gaussian beam profile in the Y direction, that is, p / expð�y2Þ, provides
the link between Y, P and γ. This implies that, observing a CCD image,
intensity profiles at different Y correspond to different powers. Therefore,
the expected exponential trend with respect to the power can be extracted
from a single picture by looking at different Y positions. Figure 8e exhibits
a fitting with two exponential decays in an intensity profile versus power. The
extracted ratio of the related two decay rates is 5 and hence in agreement with
the expected quantized theoretical values described in Section 2.2.

Undular bores of DSWs were analyzed and exhibited in Figure 8f, while the
field intensity undulation period T versus P is shown in Figure 8g. In order to
demonstrate univocally that T / ffiffiffi

P4
p

, inset in Figure 8g reports the period T as
function of

ffiffiffi
P4

p
. The resulting linear behavior confirms the theoretical results.

3.2. Nonlinearity and disorder in thermal media

Thermal media have been investigated also in their interplay with disorder.
Theoretical studies demonstrated that, even if solitons are stable under
a certain amount of randomness, the latter competes with nonlinearity,
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while nonlocality filters disorder-induced scattering effects and soliton ran-
dom walk can be efficiently suppressed in highly nonlocal media [54,56,91].
DSWs are nonlinear coherent oscillations, and the phenomenon of light
scattering affects their formation in significant way [32].

In this section, we report experiments in two different optical systems
that combine third-order nonlinearity (high-power laser beams) with
nonlocality (thermal material response) and disorder (scattering particles).
The first thermal medium is a dispersion of silica spheres of 1μm diameter
in 0.1mM aqueous solution of RhB. The second one is a
1mm� 1mm� 8:5mm parallelepiped of silica aerogel. Despite observa-
tions of DSWs in disordered thermal media, a theoretical model that
comprehends both nonlinearity, nonlocality, and disorder has been devel-
oped only for solitons [54]. The existing theoretical model for DSWs is
summarized below and neglects the nonlocality contribution. It approx-
imates thermal nonlinearity to a local Kerr effect, and adds a random
potential [32].

We start from Eq. (14) with Δn½jAj2� ¼ n2jAj2 þ ΔnRðX;Y;ZÞ and
Lloss,1 (no loss). Through the same scaling of Section 2.1 and approx-
imation to cylindrical symmetry @y,0, we obtain

i�@zψ þ �2

2
@2
xψ � jψj2ψ þ URψ ¼ 0; (38)

with URðx; y; zÞ ¼ ΔnRðX;Y;ZÞ
n2I0

taken as a random dielectric noise mainly

acting on the phase [32]. In the hydrodynamic limit �,0, the phase
chirp behaves like a moving unitary mass particle [32]:

d2x
dz2

¼ � dU
dx

þ ηR; (39)

with U ¼ exp �x2=2ð Þ the deterministic potential for a Gaussian TEM00

given by the nonlinearity, and ηR ¼ � dUR
dx a Langevin force with Gaussian

distribution, such that hηRðzÞηRðz0Þi ¼ η2δðz � z0Þ and η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dUR
dx

� �2D Er
’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h ΔnRð Þ2i
q

ðjn2jI0Þ�1 the disorder strength. Brackets h; i denote the statis-

tical average, and the dependence of ηR on x; y is neglected for stochastic
independence and cylindrical symmetry, respectively, thus ηR ’ ηRðzÞ.

Figure 9 shows trajectories xðzÞ (Figure 9(a,b)) and phase space ðx; vÞ
(Figure 9(c,d)), where v ¼ dx

d z , respectively, without (η ¼ 0) and with
(η ¼ 0:1) disorder, the latter obtained by a stochastic Runge-Kutta algo-
rithm [92,93]. In absence of disorder (Figure 9(a,c)) the shock is signaled
by the intersection of multiple trajectories xðzÞ and, in the phase space, this
corresponds to the induced wave-breaking phenomenon, that is, the
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folding of the velocity profile into a multivalued function for increasing z.
In the presence of disorder, Figure 9(b,d), the particle-like dynamics tends
to diffuse, as is evident from the related trajectories and phase space.
Correspondingly, the propagation distance before the intersections is
greater for the disordered case and the shock is delayed in the z direction.

We report here the experiments in RhBwith silica sphere dispersions [32]. In
order to vary the degree of disorder, several silica concentrations were prepared,
ranging from 0:005w=w to 0:03w=w, in units of weight of silica particles over
suspension weight. The experimental setup is similar to that illustrated in
Figure 6a. The first lens focuses the beam on the input facet of the sample,
reaching a beam waist W0 ’ 10μm. The aqueous solutions are put in
1mm� 1cm� 3cm glass cells with propagation along the 1 mm vertical
direction (parallel to gravity) to moderate the effect of heat convection. All
measurements are performed after the temperature gradient has reached the
stationary state and the particle suspensions are completely homogeneous. In
[32], the main loss mechanisms are absorption and scattering. The measured
loss length (absorption plus scattering) varies in a range from 1:2mm to 1:6mm
(highest value is for pure dye solution). These values are obtained by fitting with
exponential decay the beam intensity vs propagation distance Z. The fact that

Figure 9. (a, b) Trajectories xðzÞ and (b, d) phase space ðx; vÞ, respectively, with disorder
strength η ¼ 0 and η ¼ 0:1. z varies from z ¼ 0 to z ¼ 3.

Figure reprinted with permission from [32]. Copyright 2012 by the American Physical Society.
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the loss length is always greater than the position of the shock point [32] allowed
authors to neglect losses at a first approximation in their theory. In addition,
they found that the scatteringmean free path is of the order ofmillimeters for all
the considered samples. In Figure 10 images of the transmitted beam on the
transverse plane for different input laser powers P and various concentrations c
are shown. The number and the visibility of the DSW oscillations increase with
P and decrease with c, evidence of DSWs enhancement by nonlinearity and
inhibition by disorder.

Experimental observations have been also performed in silica aero-
gel [35]. The silica aerogel samples are prepared following a base-
catalyzed sol-gel procedure [94], and in-depth details are given in
[35]. It turns out that the sample used in the experiment has mass
density ρ ¼ 0:215g=cm3 and refractive index n0 ¼ 1:074. Experimental
setup is very similar to the previous ones (Figure 1a), except for the
sample. In [35], authors vary the input beam waist W0, the input laser
power Pin, and record the transmitted intensity distribution
IðX;Y;Z ¼ 8:5mmÞ by the CCD camera. Observations are shown in
Figure 11. Images in the second and third rows of Figure 11 corre-
spond to the same experimental conditions in term of incident laser
power and beam size, but the incident laser beam impinges on

Figure 10. Transverse intensity patterns for different input power P and silica spheres concen-
tration c: (a) P ¼ 5mW, c ¼ 0w=w, (b)P ¼ 400mW, c ¼ 0w=w, (c) P ¼ 5mW, c ¼ 0:017w=w,
(d) P ¼ 400mW, c ¼ 0:017w=w, (e) P ¼ 5mW, c ¼ 0:030w=w, (f) P ¼ 400mW,
c ¼ 0:030w=w. White 1D curves show the measured section of the intensity profiles vs X.

Figure reprinted with permission from [32]. Copyright 2012 by the American Physical
Society.
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different points. In correspondence of regions of the silica aerogel
sample displaying low enough disorder (second row), a transition
from scattering dominated regimes to nonlinear regimes is present:
at moderate powers DSWs are not observed because of scattering
losses, at high powers DSWs can be generated.

3.3. Dispersive shock waves in biological suspensions and chemical
compounds

The study of optical effects in light propagation through chemical and
biological solutions is a field of growing interest [36,43,58,95–98], both
from a linear and a nonlinear perspective. However, although observations
of nonlinear optical phenomena in chemical and soft-matter systems can
be found in a large literature [29,32,34,35,38,40,49,58,99–102], and new
experiments in chemical media are useful only if the material owns very
specific properties, little is known about nonlinearity in biological fluids
and the related literature is very recent [43,97]. Bio-materials can be very
interesting, because both chemical and biological compounds can be

Figure 11. Far-field intensity profiles at the output of the silica aerogel for Pin ranging from
1mW to 1W, and input beam waist w0 ranging from 43μm to 1.4 mm. Images in the second
and third rows correspond to the same incident laser power and beam size, but different
positions of the incident laser beam.

Reprinted with permission from [35]. Copyright 2014 Optical Society of America.
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excellent tunable thermal media, and DSWs were already observed
[29,36,43].

For the sake of completeness, in this section, we report two experiments.
The first one is in M-Cresol/Nylon, a chemical solution that exhibits an
isotropic giant self-defocusing nonlocal nonlinearity, tunable by varying
the nylon concentration [36]. The second one is in human red blood cell
suspensions, where the concentration of hemoglobin (Hb) and the input
laser beam power make the nonlinearity change from self-focusing to
nonlocal defocusing [43].

Figure 12 shows transverse profiles of output beam intensity after
a propagation of 2mm in M-Cresol/Nylon. M-Cresol/Nylon is made up of
an organic solvent (m-cresol) and a synthetic polymeric solute (nylon). When
it is enlightened by a CW laser beam, light absorption induces local tempera-
ture variations, which reduces the refractive index, that is, the material
experiences a nonlinear thermo-optical effect. In particular, authors' [58]
measured the M-Cresol/Nylon nonlinear Kerr coefficient n2 and found that,
if for pure m-cresol it is � 9� 10�8cm2=W, for a nylon mass concentration
of 3:5% it is � 1:6� 10�5cm2=W, an order of magnitude higher thanmost of
the other thermal nonlinear materials reported in the literature. Authors
generated the DSWs in Figure 12 by focusing the input beam (a CW laser
of wavelength 532nm) to 20	 1μm onto the surface of M-Cresol/Nylon
solution of 3:5% nylon concentration. The input laser power was varied
ranging from 2μW to 20mW and, when it reached 5mW, the wave-
breaking occurred.

Figure 13 reports a part of the results obtained in lysed human red blood cells
aged samples, where free Hb determines sign and nonlocality of the optical
nonlinearity from self-focusing (and self-trapping) to strong thermal defocusing
effects, regime inwhichDSWsoccur [43]. Beyond the biological issues related to
human red blood cells, holding uncountable applications to life sciences and
medicine, red blood cells refractive index tunability makes this medium be
incredibly interesting also from a physical point of view [103–106]. In normal

Figure 12. Output beam intensity transverse profiles, coming out from a 2mm long M-Cresol/
Nylon solution. Input power varies: (a) Pin ¼ 2μW, (b) Pin ¼ 5mW, (c) Pin ¼ 10mW, (d)
Pin ¼ 20mW.

Reprinted with permission from [36]. Copyright 2014 Optical Society of America.
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conditions, red blood cells are disc-shapedmalleable cells, averagelywith 8μmof
diameter and 2μm of thickness, which have a spatially uniform refractive index
because of the lack of nuclei and most organelles [104,106]. To enable the
passage through veins and narrow microcapillaries, red blood cells exhibit
distinctive deformability. Since their optical properties depend on the shape
and refractive index of cells, they can be used as tunable optofluidic micro-
lenses [105].

The red blood cell refractive index is mainly determined by Hb, which is
the largest part of the erythrocyte dry content by weight [103]. Figure 13a
shows the output beam waist as a function of input power through the Hb
solutions for four different concentrations, from 2:4 to 15:0 million cells
per mL. Experiments in [43] are performed by using a linearly polarized
CW laser beam with a wavelength of 532nm focused through a lens of
125mm focal length into a 3cm long glass cuvette filled with the red blood
cell suspensions. In particular, the focused beam has initial waist
W0 ¼ 28μm at the focal point, which was located at 1cm away from the
input facet of the cuvette to avoid heating and surface effects [97]. Outputs
from the sample were monitored with a CCD camera and a power detec-
tor, and are reported in Figure 13(b–e), at variance of Hb concentration
and input power. DSWs occur at high power (Figure 13(c,e)), more visible
in high Hb concentration regime (Figure 13c).

Figure 13. Output beam waist for varying hemoglobin concentration and input power. (a)
Detected beam diameter as function of input power through the hemoglobin solutions for
four different concentrations (Hb1-Hb4): 2:4, 5:1, 8:6, and 15:0 million cells per mL. Nonlinear
self-focusing of the beam occurs around 100mW for high concentrations of hemoglobin, but it
subsequently expands into thermal defocusing rings at high powers. (b-e) Output beam
transverse intensity profiles for (b) self-trapped beam at high concentration and low power,
(c) DSW at high concentration and high power, (d) self-trapped beam at low concentration
and low power, (e) DSW at low concentration and high power.

Reprinted by permission from Macmillan Publishers Ltd. from [43]. Copyright 2019.
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3.4. Incoherent dispersive shock waves

In this section, we report experimental evidence of incoherent DSWs
theoretically introduced in Section 2.3. In particular, we show observations
of the transition from shocklets to collective incoherent DSWs [39].

By varying the effective range of nonlocality, authors of [39] performed
experiments both in the quasi-local and in the highly nonlocal regime. The
experimental setup is sketched in Figure 14. A CW laser (λ ¼ 532nm) is
made incoherent by passing through a 4-f telescope with a ground-glass
plate in the middle. The initial coherence length λ0c,200μm, that is, the
size of the speckles induced in the beam at the sample input facet, is
controlled by changing the waist impinging on the ground-glass plate.
The sample is a dilute solution of methanol and graphene nanoscale flakes.
The latter provide optimal conversion of absorbed laser energy into heat,
thanks to the absence of fluorescence mechanisms and a negligible absorp-
tion. A CCD camera detects intensity images at the output.

Figure 15 shows the shocklets formation in a quasi-local regime. To reach
this stage, concentration of graphene nano-flakes was increased, to increase
the absorption and reduce the nonlocality, and a higher coherence length was
chosen (λ0c,250μm), to inhibit collective behaviors. At low power (Figure 15a

Figure 14. Experimental setup. A CW laser beam, λ ¼ 532nm, is sent through a 4-f telescope.
A ground-glass plate G, placed in the midst of the telescope (on the focus of the first lens),
generates a speckle pattern. The incoherent beam impinges the samples, a cylindrical tube
filled with a solution of methanol and graphene nanoscale flakes, with waist W0 ¼ 2:3mm,
while the initial coherence length λ0c is controlled by changing the beam size on G. A CDD
camera detects the output.

Reprinted by permission from Macmillan Publishers Ltd. from [39]. Copyright 2015.
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for experiments, Figure 15e for NLSE simulations) propagation is linear, so
dominated by diffraction. As the input power increases (Figure 15b for
experiments, Figure 15f for NLSE simulations), each speckle develops its
own DSW, with a regular undular pattern. These are more evident in experi-
mental (Figure 15(c,d)) and numerical (Figure 15(g,h)) zooms of shocklets
undular bores.

Figure 16 reports the emergence of a giant collective incoherent DSW in
highly nonlocal regime. Such a transition was made by decreasing the concen-
tration of graphene nano-flakes and the coherence length (λ0c,200μm). At low
power, no collective behavior was observed, neither in the intensity profile
(Figure 16(a,d) for experiments, Figure 16g for NLSE simulations), nor in the
spectrogram (Figure 16j for experiments, Figure 16m for LRVE simulations). At
nonlinear regime, the occurrence of the annular reshaping of the beam is visible,
with high frequencies piled on the boundaries, and low frequencies dominating
the central part (Figure 16(b,c,e,f) for experiments, Figure 16(h,i) for NLSE
simulations). The corresponding spectrograms show the linear behavior
(Figure 16(j,m)) at low power and Z-shape distortion at higher powers. The
latter phenomenon is a signature of incoherent DSWs (see Section 2.3), and is
observable in Figure 16(k–o), respectively in experiments and simulations.

All the shock phenomena reported here, as DSWs in general, do not arise in
the weakly nonlinear (weak turbulence) regime, but solely in the strongly non-
linear (strong turbulence) regime. The Vlasov equation is valid beyond the
weakly nonlinear regime and thus describes the collective incoherent shocks
in the highly nonlocal case [39].However, in theweakly nonlocal regime, there is

Figure 15. Experimental observation at short-range regime. (a, b) Experimental beam profiles
of the output intensity recorded at power a P ¼ 0:05W, (b) P ¼ 2:50W. (c, d) Zooms on
details of (b) that evidence the development of shocklets. (e, f) Numerical simulations of NLSE
equation, and (g, h) corresponding zooms.
Reprinted by permission from Macmillan Publishers Ltd. from [39]. Copyright 2015.
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no theory that describes the development of the shocklets reported in Figure 15:
despite intense efforts from several decades, strong turbulence still constitutes
a challenging-unsolved problem of classical physics.

4. Conclusions

We reviewed the most widespread current theoretical models that describe
nonlocal NLSE DSWs in spatial optical beam propagation. Moreover, we
discussed their experimental observations.

In Section 2 the derivation of nonlocal NLSE was detailed, and main
features of wave breaking in thermal Kerr media were reported [29]. In
order to exhibit the theoretical interpretations of these phenomena as
intrinsically irreversible, TAQM and turbulence wave theory approaches
were summarized [12,39,41].

Section 3 is a collection of experiments on DSW generation in thermal
media, first about a quite rich literature on observations in Rhodamine
[29], and their TAQM explanation [37,38,40]. As second instance, we
analyzed the interaction between disorder and nonlinearity in

Figure 16. Experimental observation at long-range regime. (a-c) One-dimensional intensity
transverse profiles along x at y ¼ 0. (d-f) Two-dimensional intensity profiles. The asymmetry
in the lower part of the beam is due to convection within the sample. (g-i) Numerical
simulations of NLSE. (j-l) Experimental and (m-o) numerical spectrograms: the Z-shaped
distortion reveals a dramatic coherence degradation on the annular boundaries of the
beam (the coherence length decreases at the shock front), while a significant coherence
enhancement occurs in the internal region of the beam. Input beam power: (a, d, g, j, m)
P ¼ 0:05W, (b, e, h, k, n) P ¼ 1:25W, (c, f, i, l, o) P ¼ 2:50W.

Reprinted by permission from Macmillan Publishers Ltd. from [39]. Copyright 2015.
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Rhodamine with silica spheres [32] and in silica aerogel [35], where the
randomness inhibits the DSWs occurrence. Moreover, we reviewed very
recent works on generation of photonic wave breaking in chemical [36]
and biological solutions [43], fields where DSWs are emerging as surpris-
ing tools, useful for sensing and control of extreme phenomena. Finally, we
showed emergence of giant collective incoherent shock waves from ran-
dom wave propagation in highly nonlocal media [39].

The study of nonlinear optics in new materials, like soft matter and
biological suspensions, is opening the way to a new branch of photonics.
Many applications include, but are not limited to, spectroscopy, medicine,
life sciences, non-invasive diagnosis and time-resolved low-power probes.
May the physics of nonlinear waves support the development of these new
directions? Can novel mathematical tools deepen our understanding of
nonlinear radiation–matter interaction? This manuscript is intended to
sustain the improvement of theory and experiments concerning nonlinear
optical propagation in highly nonlocal and complex matter.
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