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Optimal control of the ballistic motion of Airy beams
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We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with
controllable range and height. We show that the peak beam intensity can be delivered to any desired location along
the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or

turbulent media.
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Airy beams have recently attracted a great deal of inter-
est due to their unique properties [1-5] and potential ap-
plications in optical micromanipulation [6], plasma
guidance [7], vacuum electron acceleration [8], and gen-
eration of three-dimensional optical bullets [9]. In prac-
tice, truncated Airy beams with finite energy have
been established in laboratories, preserving the non-
diffracting and self-accelerating properties over long dis-
tances. Such Airy beams can be generated linearly with a
cubic phase mask [2-4], or during nonlinear processes
[5,10]. In addition to Airy beams, other types of non-
diffracting beams, such as accelerating parabolic beams,
have also been demonstrated [11,12]. While, in most of
the prior experiments, the path of a truncated accelerat-
ing beam follows simple projectile motion with the peak
intensity fixed at the starting point, the natural question is
how to make a beam propagate in a general ballistic tra-
jectory and move its peak beam intensity to a given target
along a controllable path.

In this Letter, we report our theoretical and experimen-
tal results on optimal control of the general ballistic
trajectory of a truncated Airy beam. We show how a two-
dimensional (2D) beam can be set into projectile motion,
while the range and height of the trajectory can be con-
trolled at ease without initial tilting of the input beam.
Furthermore, the peak intensity of the Airy beam can
be “delivered” to anywhere along the trajectory and can
be repositioned to a given location after being displaced
due to propagation through a disordered or turbulent
medium. This brings about the possibility of sending an
intense laser beam to a target while it passes through
disordered media, such as turbulent fluids, and gets over
obstacles.

We consider a typical optical system for generation of
2D Airy beams, as depicted in Fig. 1(a), where a Gaussian
beam is first modulated by a cubic phase mask and then
passes through a Fourier transform lens [2,3]. Usually, the
Gaussian beam, the mask, and the Fourier lens are set to
be coaxial along z. If the lens is transversely shifted, a tilt-
ing angle will be introduced into the Airy beam [3]. Here,
we fix the position of the lens but allow the mask and
Gaussian beam to have transverse displacements in the
Fourier plane. To understand the influence of these displa-
cements, let us first consider the one-dimensional case.
The Fourier spectrum of a truncated Airy beam can be ex-
pressed as exp(—aw?) exp[i(w® - 3a®w — ia®) /3], where a
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is a small parameter for the exponential truncation factor,
and w is the normalized wave number [1]. If the Gaussian
beam and the phase mask are translated by w, and w,, in
the Fourier plane, the resulting spectrum exp[-a(w —
w,)?] exp{i[(w - w,,)* - 3a®(w - w,,) - ia’]/3} leads to
a new truncated Airy beam with a field envelope ¢ ex-
pressed as follows:

¢ = Cf (s.O)Als —w& - (¢/2)°

+ia(& - 2w, + 2w, )] exp(iw,,s). (1la)

C = exp(-aw,* - aw,,* + i2a°w,, - i20°w, + 2aw,,W,),

(1b)
f(s, &) = explas + is&/2
+ (—iw,,%/2 + 0% /2 - 20w, + aw,)E
+ (—(1/2 - iwm/2)é2 - &33/12}’ (1(?)

where Ai represents the Airy function, and s and £ are nor-
malized transverse and longitudinal coordinates. From
Egs. (1), we see that the trajectory changes due to the
translation of the mask as expressed by s=
wyé + (£/2)%. The term ia(£ - 2w, + 2w,,) shows that
the new peak-intensity positionis at & = 2(w, — w,,), con-
trolled by translation of both the mask and the Gaussian
beam. Applying similar analysis to the 2D case shown in
Fig. 1(b), the trajectory can now be expressed as
-V2[D,,&/V/2 + (£/2)?] with a new peak-intensity posi-
tion at £ = —v/2D,, + \/§Dg D, and D,, are normalized
vertical displacements of the Gaussian beam and the mask
in the Fourier plane, respectively). Therefore, by translat-
ing the mask and Gaussian beam with respect to the z axis,
the location of peak beam intensity, as well as maximum
height and range of the trajectory, can be controlled with
ease. Typical 2D numerical results are shown in Figs. 1(c)
and 1(d). For D, = D,, = 0, the Airy beam propagates akin
to a body projected horizontally, with the peak intensity
appearing at the starting point. Moving the mask to differ-
ent vertical positions (D,, =~ -2.3, 3.1) leads to propaga-
tion of the Airy beam in a ballistic trajectory, akin to a
batted baseball. In the case of D, = 0, the peak intensity
always appears at the maximum height. However, by
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Fig. 1. (Color online) (a) Schematic of input Gaussian beam,
cubic phase mask, and Fourier lens used for generation of trun-
cated Airy beam. (b) Location of mask (center denoted by open
circle) and input beam (marked by dashed circle and center de-
noted by solid dot) in the Fourier plane. (c¢) Illustration of dif-
ferent trajectories obtained at different D, and D,, when the
peak beam intensity appears at maximum heights or ranges
(marked by dots). The inset shows the Airy beam profile at
the maximum height of the upper curve. The lower curve cor-
responds to normal excitation at D, = D,, = 0; so its peak in-
tensity is at the starting point (2 = 0). (d) Numerical simulations
of beam propagation for two specific cases corresponding to
the upper trajectory shown in (c).

translating also the Gaussian beam, so that D, = -D,,, the
peak intensity appears at the maximum range (“point of
fall”) as we shall demonstrate below.

In our experiment, a Gaussian beam (1 = 632.8 nm) is
sent through a cubic phase mask assisted by a spatial light
modulator (SLM) and then turned into a truncated Airy
beam with a Fourier transform lens (f = 150 mm)
[Fig. 1(a)]. A CCD camera is used to record the intensity
pattern of the Airy beam at different propagation dis-
tances. To do so, the CCD camera is carefully repositioned
along the z direction, and a reference Gaussian beam
(without passing through the cubic mask) is used for cali-
bration of the camera transverse position so that it has no
lateral shift due to manual movement of the camera. When
the beam, mask, and lens are aligned coaxially, a “horizon-
tally projected” Airy beam is generated with a decaying in-
tensity (due to diffraction) during propagation [Fig. 2(a)].
If only the mask is translated slightly in the vertical direc-
tion, the resulting Airy beam propagates in general ballis-
tic trajectories with different ranges [Figs. 2(b) and 2(d)],
while its peak intensity appears at the maximum heights.
These different trajectories correspond to different
launching angles due to the transverse displacement of
the phase mask relative to the z axis of the system [3]. By
translating the Gaussian beam the same distance, but to
the opposite direction, the trajectory remains the same,
but the peak intensity moves to the maximum range
[Figs. 2(c)and 2(e)]. These experimental results agree well
with our theoretical predictions.

If we allow both vertical and horizontal displacements
of the phase mask [(D,,;,D,,,)] and the Gaussian beam
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Fig. 2. (Color online) Experimental demonstration of con-
trolled trajectories (dashed curves) of truncated Airy beams un-
der different excitation conditions. Snapshots of transverse
intensity patterns are shown at marked positions. (a) Normal
condition when peak beam intensity is at the starting point, cor-
responding to lower curve in Fig. 1(c). (b), (d) Peak intensity
goes to the maximum height with shifting of only the cubic
phase mask. (c), (e) Peak intensity goes to the “point of fall”
with additional shifting of the Gaussian beam.

[(Dga» Dyy)), asillustrated in Fig. 3(a), the projectile motion
of the Airy beam can be set into any arbitrary direction.
Following similar theoretical analysis for Egs. (1), the
(7,y) trajectory can be expressed as [-D,,,&, —D,,,é-
V2(£/2)?]. Clearly, the Airy beam in this case undergoes
uniform motion along the horizontal direction while accel-
erating along vertical direction. As such, the Gaussian
beam (even initially aiming along the z direction) can pro-
pagate to any off-axis location. The horizontal displace-
ments of the mask and Gaussian beam will not change
the location of the peak beam intensity, but they can
change the Airy beam profile from symmetric (when
D,,,, = Dg,) to asymmetric (when D,,, # D). Examples
of the experimental results are shown in Figs. 3(b) and
3(c), where Fig. 3(b) is obtained by shifting only the mask
along the diagonal direction (D, = D,,, =d <0; d =
-2.3 in normalized units). The peak intensity appears at
the maximum height of the trajectory when the Gaussian
beam is on-axis [D,, = D, = 0, shown in Fig. 3(b)], but it
moves to the “point of fall” when the beam is displaced
vertically [D,, = 0, Dy, = —d, shown in Fig. 3(c)]. In this
case, since D, # D, the Airy beam starts with an asym-
metric profile but evolves into a symmetric profile after
restoring its peak intensity. These experimental observa-
tions are corroborated with numerical simulations.

The above control of an optical beam may find prac-
tical applications in transmission and reposition of the
peak beam intensity to a target, even through disordered
media. An example is illustrated in Fig. 4(a), where the
peak intensity of a truncated Airy beam is supposed to
land on a target located at (x,y,2) = (0,0,25 cm) along
a curved trajectory (dashed curve) after passing through
a disordered medium. However, due to presence of the
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Fig. 3. (Color online) Experimental demonstration of acceler-
ating Airy beams with transverse uniform motion. (a) Relative
positions of cubic phase mask and Gaussian beam in the Four-
ier plane. (b), (c) Experimental results of the trajectory and in-
tensity pattern of the Airy beam obtained under different
excitation conditions as depicted in (a).

disordered medium, the Airy beam path (solid curve) is
deflected off the target and diminishes in intensity during
propagation. Simply by translating the phase mask and
the initial Gaussian beam, the restored peak intensity
can be repositioned at the target. Corresponding experi-
mental results obtained with a turbulent salt-water mix-
ture are shown in Figs. 4(b)-4(e). First, we “aim” the Airy
beam at the target after 25 cm of propagation through air
[Fig. 4(b)]. Then, salt is added and stirred in water placed
in the beam path. Although the Airy beam is recovered
through disordered scatters due to its self-healing prop-
erty [4], its position in the target plane is shifted drama-
tically [Fig. 4(c)]. The large lateral shift of the Airy beam
path from Figs. 4(b) and 4(c) is caused mainly by refrac-
tion from the salt-water mixture (which has a refractive
index different from that of air), while small variation of
the Airy beam in its shape and location in a given output
plane occurs due to turbulence of the stirred mixture. By
translating the mask and the Gaussian beam indepen-
dently, as expected, not only does the Airy beam come
back to the target, but its peak intensity is also restored
[Fig. 4(d)]. We emphasize that Figs. 4(c) and 4(d) were
taken as snapshots to show one example of the “fluctu-
ating” pattern, as the shape and transverse position of the
self-healing Airy beam vary slightly with time. However,
the average intensity pattern is a well-defined Airy beam
with its peak intensity repositioned at the target. For
comparison, keeping all conditions the same as for
Fig. 4(d), except for changing the cubic phase into uni-
form phase in the SLM, the Airy beam returns to a normal
Gaussian beam that is severely scattered, deformed, and
shifted after propagating through the same salt-water
mixture [Fig. 4(e)]. These results suggest that Airy beams
are excellent candidates for beam reposition to a given
target through disordered or turbulent media, perhaps
even with a feedback system that could compensate
time-dependent fluctuation.

In summary, we have demonstrated optimal control of
the ballistic motion of Airy beams. We have shown that the
range and height of the beam trajectories can be con-
trolled with ease, and the peak beam intensity can be

(a) disordered

medium/

Fig. 4. (Color online) (a) Schematic of Airy beam propagation
through a disordered medium. The dashed (solid) curve depicts
the trajectory in free space (disordered medium). (b) Intensity
pattern of output Airy beam at 2 = 25 cm through air and (c)
stirred salt—-water mixture. (d) Restoration of the Airy beam
peak intensity at the target after translating the phase mask
and input Gaussian beam. (e) Typical output pattern of a Gaus-
sian beam from the salt-water mixture. The white cross corre-
sponds to the target point at (0,0,25 cm).

delivered and repositioned to a given target after propa-
gating through disordered or turbulent media. We men-
tion that, by introducing the rotation of the cubic mask,
the acceleration direction of the Airy beams can also
be changed, representing an additional freedom for trajec-
tory control. A similar method can be used for control of
other accelerating beams, such as parabolic beams. Our
results bring about possibilities for control of beam pro-
pagation and navigation in turbulent fluids.
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