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Demonstration of surface soliton arrays at the edge
of a two-dimensional photonic lattice
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We demonstrate surface soliton arrays at the interface between a homogeneous medium and an optically
induced two-dimensional semi-infinite photonic lattice. These are nonlinear Tamm-like surface states local-
ized in one but extended periodically in the other transverse dimension. Both in-phase and staggered
out-of-phase soliton arrays are observed, and the experimental results are corroborated by numerical
simulations. © 2008 Optical Society of America
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Recently, self-trapped nonlinear surface states (sur-
face solitons) have attracted a great deal of interest
in optical discrete systems [1]. For instance, one-
dimensional (1D) bright in-phase (IP) surface soli-
tons (fields in phase in adjacent channels with propa-
gation constants located in the semi-infinite gap) at
the edge of a waveguide lattice with a self-focusing
nonlinearity have been predicted and demonstrated
in experiment [2,3]. Likewise, out-of-phase (OP) sur-
face gap solitons (fields with a � phase difference be-
tween adjacent channels with propagation constants
in a “true” photonic bandgap) have been established
with a self-defocusing nonlinearity [4–7]. These stud-
ies extend the analogy between optical surface waves
and localized surface Tamm states into the nonlinear
regime. Theoretical studies of such surface solitons
have been carried on in the two-dimensional (2D)
domain [8–10], where many interesting aspects of
nonlinear surface waves are expected to occur. In
fact, 2D surface solitons have also been successfully
demonstrated in experiment [11,12].

At the interface between a homogeneous medium
and a 2D semi-infinite photonic lattice, such as those
created in [11,12], it is natural to ask if a train of 2D
surface solitons (surface soliton arrays) can propa-
gate along the interface. Although soliton trains have
been generated in a 2D waveguide lattice before
[13,14], they were excited inside the uniform lattice
but not at the edge of the lattice. To our knowledge,
surface soliton arrays have never been demonstrated
in experiment. (In theory, arrays of 2D surface soli-
tons were proposed, but they was based on the trans-
verse modulation instability of 1D solitons at the sur-
face of a 1D waveguide lattice [15]). In this Letter, we
report what we believe to be the first observation of
surface soliton arrays propagating along the edge of
an optically induced 2D waveguide lattice. Different
from previous experiments on surface solitons, we
launch a tightly focused stripe beam (akin to a
quasi-1D plane wave) at the interface between a
uniform medium and a semi-infinite 2D waveguide
lattice. Both IP and OP (staggered) surface solitons
are observed with the self-focusing and self-
defocusing nonlinearities, respectively. The differ-

ence between these two types of surface solitons is
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clearly
illustrated in our experiment by phase measurement
as well as by monitoring the Fourier spectrum.
Numerical simulations find good agreement with
experimental observations.

The experimental setup is similar to that used for
generation of a single 2D surface soliton [11]. An
interface between a uniform medium and a semi-
infinite 2D waveguide lattice is optically induced by
an ordinarily polarized lattice beam with a gridlike
intensity pattern that remains nearly invariant
through a 10 mm long Ce:SBN (strontium-barium
niobate) photorefractive crystal [Fig. 1(a)]. A cylindri-
cally focused probe beam is at 488 nm wavelength
and extraordinarily polarized. The probe beam has a
FWHM �14 �m at input [Fig. 1(b)], and it undergoes
linear diffraction to �70 �m in the homogeneous re-
gime of the crystal [Fig. 1(c)]. The probe beam is
launched at the interface between the homogeneous
and periodic (lattice) regimes and propagates col-
linearly with the lattice beam. The first Bloch band
structure of the 2D square lattice is illustrated in
Fig. 1(d), and the experimentally recorded Fourier

Fig. 1. (Color online) Shown in top panels are the (a) lat-
tice pattern, (b) the probe beam at input, and (c) linear out-
put. Bottom panels show the (d) first Bloch band structure
within the first BZ, the k-space spectra of the (e) lattice
beam, and that of the (f) probe beam. High-symmetry
points are marked with dots and the first BZ with dashed

lines.
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(k-space) spectrum of the lattice beam and that of the
probe beam are shown in Figs. 1(e) and 1(f), respec-
tively. Clearly, the initial stripe beam is narrow
enough so that its spectrum extends across the first
Brillouin zone (BZ).

First, we apply a positive voltage to turn the crys-
tal into a self-focusing medium [11] and demonstrate
the IP surface soliton arrays. The excitation scheme
is similar to that used for the demonstration of dis-
crete soliton trains inside a uniform 2D square lattice
[13] except that the stripe beam is now launched
along the lattice surface, parallel to one of the lattice
principal axes. Typical experimental results are pre-
sented in Fig. 2, where Fig. 2(a) shows the lattice pat-
tern with the location of input probe beam marked by
a straight (blue) line. When the nonlinearity is ab-
sent (taking advantage of the noninstantaneous re-
sponse of the crystal [11]), linear propagation of the
probe beam is shown in Fig. 2(b). Strong discrete dif-
fraction and coupling of the probe beam up to the
fourth waveguide channel from the surface is clearly
visible. Under the same experimental condition, the
probe beam couples only to the nearest lattice sites
when it excites a waveguide inside and far away from
the lattice boundary, suggesting possible surface-
enhanced reflection [3,11]. With a proper level of high
nonlinearity (at a bias field of 2.0 kV/cm), the probe
beam evolves into a surface soliton train [Fig. 2(c)],
localized in one transverse direction but extended pe-
riodically in the other orthogonal direction owing to
the periodic modulation of the waveguide lattice.
Such an array of surface solitons established under
the self-focusing nonlinearity belongs to the IP sur-
face solitons with modes bifurcated from the � point
of the first Bloch band but located in the semi-infinite
gap. This is confirmed by monitoring the phase struc-
ture (interference measurement between the soliton
beam and a tilted broad beam), and part of the
zoom-in interferograms are shown in Fig. 2(d). The
IP relation between stripes trapped in adjacent chan-
nels is evident. Furthermore, the spatial spectrum of
the probe beam obtained from linear [Fig. 2(e)] and
nonlinear [Fig. 2(f)] propagations indicates that,

Fig. 2. (Color online) Experimental demonstration of IP
surface soliton train. (a) Lattice pattern with location of
input stripe beam; (b) linear and (c) nonlinear output
patterns of the stripe beam; (d) zoom-in interferogram of
(c) with a tilted plane wave; and (e), (f) the k-space spectra

corresponding to (b) and (c), respectively.
when the surface soliton train is established the spec-
trum reshapes and most of the power tends to con-
centrate to the central region of the first BZ (i.e., near
the � point) where the probe beam would otherwise
undergo normal diffraction.

Next, we apply a negative voltage to turn the crys-
tal into a self-defocusing medium and demonstrate
the OP surface soliton arrays. The excitation scheme
is similar to that used for the demonstration of dis-
crete gap soliton trains [14], except that the stripe
beam is now launched between the first two rows of
the lattice surface where the index change is maxi-
mum. Figure 3(a) shows the lattice pattern and the
location of the input probe beam. With a proper level
of nonlinearity (at a bias field of −1.5 kV/cm), self-
trapping of the stripe beam is also realized [Fig. 3(b)],
although the surface soliton train is less localized as
compared with that of [Fig. 2(c)]. This surface soliton
train differs significantly from the IP soliton train
shown in Fig. 2 in both the phase structure and spa-
tial spectrum. Phase measurement shows that the
surface soliton train has an OP relation between
stripes trapped in adjacent channels [Figs. 3(c) and
3(d)] but remains IP along each stripe parallel to the
lattice edge, a characteristic feature of the Bloch
modes at the X point of the first band of a square lat-
tice [16]. Spectrum measurement reveals that from
linear propagation [Fig. 3(e)] to nonlinear self-
trapping [Fig. 3(f)], the stripe beam reshapes its spec-
trum so that most of power tends to concentrate into
the region near the X point where the stripe beam
would experience anomalous diffraction. Thus, both
the phase and spectrum suggest that the surface soli-
ton train arise from Bloch modes at the interior X
point of the first band [17]. We also mention that the
spectrum shown in Fig. 3(f) has only one pronounced
peak near one (upper right) X point but extended
nearly uniformly across the other (bottom left) X
point, simply because the excitation occurs at the
interface between the homogeneous regime and the
semi-infinite lattice.

Fig. 3. (Color online) Experimental demonstration of OP
surface soliton train. (a) The lattice pattern with location of
input stripe beam; (b) nonlinear output pattern of the soli-
ton train; (c) interferogram of (b) with a titled broad beam;
(d) zoom-in version of (c); and (e), (f) the k-space spectra
corresponding to linear and nonlinear propagation,

respectively.
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Finally, the above observations are corroborated by
our numerical simulations with parameters close to
those from experiment. Numerical results after
10 mm of propagation (corresponding to the crystal
length) are shown in Fig. 4. Again, difference in
phase relation and spectrum reshaping can be seen
clearly between IP and OP surface soliton trains.

Before closing, we mention that the term surface
soliton train is used here loosely, as the observed 2D
surface arrays do not arise from the transverse
modulation instability of the stripe soliton as in [15].
In fact, the instability occurs at higher powers or for
the case when the stripe beam is excited far from the
lattice edge at the same level of nonlinearity, suggest-
ing a stabilizing effect of the surface or a threshold
power for surface solitons. Nevertheless, the term
surface soliton train is used as a periodic nonlinear
Tamm-like surface state, which could also be viewed
as a bound state of the 2D surface solitons observed
in [11]. For the IP train it looks like a juxtaposition of
many single surface solitons, while the energy should
be adjusted owing to the interaction between the
nearby soliton states; for the OP train, it is more
than a juxtaposition of single 2D surface gap solitons
owing to its phase structure (i.e., IP for all peaks
along the same stripe parallel to the lattice surface).
This difference relates directly to the k-space reshap-
ing to the M versus X points of the first band. The va-
riety and stability of the soliton bound states may
stimulate further study in other nonlinear surface
systems.

In summary, we have demonstrated the formation
of discrete surface soliton arrays at the interface be-
tween an optically induced 2D photonic lattice and a
continuous medium. These are Tamm-like optical
nonlinear surface states localized in one transverse
dimension while propagating invariantly along the
surface in the longitudinal direction. Although the
electronic Tamm surface states are well known in
solid-state physics, the area of optical surface waves
seems to be enriched by many new ideas, such as
nonlocal surface solitons [18], polychromatic surface
solitons [19], and spatiotemporal surface light bullets

Fig. 4. (Color online) Numerical results of IP (top) and OP
(bottom) surface soliton train corresponding to Figs. 2 and
3. From (a) to (d) are the intensity pattern of the soliton
beam (after 10 mm propagation), the interferogram, and
the linear and nonlinear k-space spectra. Dashed squares
mark the first BZ.
[20]. Now that surface states have been successfully
demonstrated in a number of experiments in nonlin-
ear optics, we expect many interesting surface phe-
nomena could be explored in an optical setting with
reconfigurable photonic structures.
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