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Dispersive shock waves in thermal optical media are nonlinear phenomena whose intrinsic irreversibility
is described by time asymmetric quantum mechanics. Recent studies demonstrated that the nonlocal wave
breaking evolves in an exponentially decaying dynamics ruled by the reversed harmonic oscillator, namely,
the simplest irreversible quantum system in the rigged Hilbert spaces. The generalization of this theory to
more complex scenarios is still an open question. In this work, we use a thermal third-order medium with an
unprecedented giant Kerr coefficient, the m-cresol/nylon mixed solution, to access an extremely nonlinear,
highly nonlocal regime and realize anisotropic shock waves with internal gaps. We compare our
experimental observations to results obtained under similar conditions but in hemoglobin solutions from
human red blood cells, and found that the gap formation strongly depends on the nonlinearity strength. We
prove that a superposition of Gamow vectors in an ad hoc rigged Hilbert space, that is, a tensorial product
between the reversed and the standard harmonic oscillators spaces, describes the beam propagation beyond
the shock point. The anisotropy turns out from the interaction of trapping and antitrapping potentials. Our
work furnishes the description of novel intriguing shock phenomena mediated by extreme nonlinearities.
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Dispersive shock waves (DSWs) are widespread phe-
nomena in physics—from hydrodynamics [1–3] to acous-
tics [4], from Bose–Einstein condensates [5–10] to plasmas
[11], and from quantum liquids [12] to optics [13–35].
In photonics, when light propagates in a medium whose

refractive index depends on the beam intensity, (e.g., through
the Kerr effect [36]), the interplay between diffraction (or
dispersion) and nonlinearity can lead to steep gradients in the
phase profile and, in some cases, to a wave breaking [35].
Such discontinuity is regularized by rapid oscillations in
phase chirp and in intensity outlines called undular bores
[18]. If we mutate this third-order nonlinearity, making it
nonlocal (or noninstantaneous), then the dynamics may have
some changes. When the phase chirp reaches the disconti-
nuity and starts oscillating, the intensity does not develop
undular bores but rather the annular collapse singularity
[27,28,35,37]. Spatial collapse of DSWs occurs in thermal
media, where the thermo-optic effect leads the light-matter
interaction and the refractive index perturbation depends on
the whole intensity profile [35,36].
Theoretically, such modification of the Kerr nonlinearity

has significant consequences. Laser beam propagation in a
standard Kerr medium is ruled by the nonlinear Schrödinger
equation (NLSE), which is exactly solvable by the inverse
scattering transform method [38–40]. However, the NLSE
with a nonlocal potential cannot be solved by inverse

scattering transform [despite some recent progress in two-
dimensional (2D) media [41,42] ] but only through the
Whithammodulation and the hydrodynamic approximation
[43]. Moreover, the dynamics beyond the shock appears
to be intrinsically irreversible, as recently shownby applying
time asymmetric quantum mechanics [44–55] to the
description of DSWs in highly nonlocal approximation
[25,26,28,35,56].
Light propagation beyond the collapse is then expressed

as a superposition of unbounded eigenfunctions called
Gamow vectors (GVs) [55,57,58], which exponentially
decay with quantized decay rates. Such light wave evolu-
tion is the outcome of a phenomenon, the shock, that is
intrinsically irreversible. In this case, irreversibility means
that there is no way to get the initial Gaussian beam back
from the final output after the wave breaking: even in the
absence of appreciable absorption and interaction with an
external thermal bath, the dynamics cannot be inverted, i.e.,
it is time asymmetric. Can this theoretical model be used to
describe much more complex scenarios? To answer this
question, we need to access regimes with much stronger
nonlinearity.
In recent experiments, it is shown that m-cresol/nylon

solutions exhibit an isotropic giant self-defocusing non-
linearity [59]. M-cresol/nylon is a thermal chemical mix-
ture consisting of an organic solvent (m-cresol) and a
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synthetic polymeric solute (nylon). When it is illuminated
by a cw laser beam, light absorption induces heat, which
reduces the refractive index: the material experiences a
large thermo-optical effect made nonlocal by the heat
diffusion. Since the temperature changes with the beam
intensity, this nonlinearity follows a nonlocal Kerr
model. The Kerr coefficient n2 of pure m-cresol is
−9 × 10−8 cm2=W, but in mixtures with nylon the coef-
ficient can be as high as n2 ¼ −1.6 × 10−5 cm2=W for a
nylon mass concentration of 3.5%, orders of magnitude
higher than other thermal nonlinear materials in which
annual collapse singularities have been observed [35].
In this Letter, we report on our theoretical discovery and

experimental evidence of optical DSWs with an anisotropic
zero singularity (ZS) (i.e., a gap in the intensity profile
along only one direction) in m-cresol/nylon solutions. The
shock does develop an annular collapse, but around the ZS
it presents an abrupt intensity discontinuity. We theoreti-
cally analyze this anisotropic wave breaking. Although the
phenomenon of shock-wave interaction observed here is
classical, the underlying physics is explained exactly by
the theory based on time asymmetric quantum mechanics.
In our approach, the nonlocal nonlinear potential that
rules the light-matter interaction acts like a specific linear
operator, whose shape depends on the initial condition.
By a convolution reduction [60], we transform a classical
NLSE into a linear Schrödinger equation acting on a rigged
Hilbert space [46]. We model the beam propagation beyond
the shock point and uncover the mechanism that determines
how such an abrupt intensity discontinuity is generated. We
numerically simulate these results and find remarkable
agreement between experimental observations and theo-
retical predictions. Experiments were carried out also in
hemoglobin solutions with similar thermal nonlinearity,
and we found that the gap formation strongly depends on
the nonlinearity strength. The results we found are general,
and our theory can be applied to other physical systems
with high nonlinearity, e.g., plasmonic nanosuspensions
[61], Bose–Einstein condensates [9,62], or saturable defo-
cusing atomic vapors, where the evolution leads to dark
soliton instability [63].
For a laser beam propagating in a thermal medium with

refractive index n¼n0þΔn½jAj2�ðRÞ, whereR¼ðR⊥;ZÞ¼
ðX;Y;ZÞ, the NLSE describes the evolution of the envelope
AðRÞ of the monochromatic field EðRÞ ¼ Ê0AðRÞeikZ. It
reads as

2ik∂ZAþ∇2
R⊥Aþ 2k2

Δn½jAj2�
n0

A ¼ −i
k

Lloss
A;

where ∇2
R⊥ ¼ ∂2

X þ ∂2
Y , k ¼ ð2πn0=λÞ is the wave number,

λ is the wavelength, and Lloss is the linear loss length. By
defining the intensity I ¼ jAj2, the power P̄ðZÞ ¼
∬ dR⊥IðRÞ, the diffraction length Ld ¼ kW2

0 with W0

the initial beam waist, and α ¼ Ld=Lloss, one can see that

P̄ is not conserved only if α ≠ 0. Indeed, if α ∼ 0, then
∂ZIðRÞ∼0 [64] andΔn½jAj2� ¼ Δn½jAj2�ðR⊥Þ, as obtained
from the derivation of the refractive index perturbation
from the heat equation in parabolic approximation [35].
It turns out that, in low absorption regime, the refractive

index perturbation in our NLSE is [35] Δn½jAj2�ðR⊥Þ ¼
n2∬ dR0⊥KðR⊥ −R0⊥ÞIðR0⊥Þ, with n2 the Kerr coefficient
and KðR⊥Þ the kernel function describing the nonlocal
nonlinearity, normalized such that ∬ dR⊥KðR⊥Þ ¼ 1. For
KðR⊥Þ ¼ δðR⊥Þ we attain the well-known local Kerr
effect, i.e., n ¼ n0 þ n2I [36]. In our nonlocal case,
where the laser beam produces a thermo-optic effect
that generates an isotropic variation of the medium
density distribution, the response function is KðX; YÞ ¼
ð1=2πL2

nlocÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
=LnlocÞ, with K0 the modified

Bessel function and Lnloc the nonlocality length
[17,34,65–67].We rescale our NLSEwith α ∼ 0 by defining
the dimensionless variables x ¼ X=W0, y ¼ Y=W0, and
z ¼ Z=Ld. We obtain

i∂zψ þ 1

2
∇2

r⊥ψ þ χPK � jψ j2ψ ¼ 0; ð1Þ

where r ¼ ðr⊥; zÞ ¼ ðx; y; zÞ, ∇2
r⊥ ¼ ∂2

x þ ∂2
y, ψðrÞ ¼

ðW0=
ffiffiffiffi
P̄

p
ÞAðRÞ, χ ¼ n2=jn2j and P ¼ P̄=PREF with

PREF ¼ λ2=4π2n0jn2j. The asterisk in Eq. (1) stands for
the convolution product, while Kðx; yÞ ¼ W2

0KðX; YÞ ¼
ð1=2πσ2ÞK0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=σÞ, with σ ¼ Lnloc=W0 the non-

locality degree.
In highly nonlocal approximation (σ ≫ 1), even if the

parabolic approximation for the NLSE does not always
work [68], in our case jψ j2 mimics a delta function (or a
narrow superposition of delta functions), and the nonlocal
potential loses its I dependence, becoming a simple
function of the transverse coordinates [65,69], that is,
K � jψ j2 ≃ Δðr⊥Þ, with

Δðr⊥Þ ≃ Δð0Þ þ ð∂xΔjr⊥¼0Þxþ ð∂yΔjr⊥¼0Þy

þ 1

2
ð∂2

xΔjr⊥¼0Þx2 þ ð∂x∂yΔjr⊥¼0Þxy

þ 1

2
ð∂2

yΔjr⊥¼0Þy2 ð2Þ

after a Taylor second-order expansion. This approximation
maps the NLSE in Eq. (1) into a linear Schrödinger equation
i∂zψðrÞ ¼ Ĥðp⊥; r⊥ÞψðrÞ, with Ĥðp⊥; r⊥Þ ¼ 1

2
p̂⊥2 þ

V̂ðr⊥Þ the Hamiltonian, p̂⊥ ¼ ðp̂x; p̂yÞ ¼ ð−i∂x;−i∂yÞ
the transverse momentum, and V̂ðr⊥Þ ¼ −χPΔðr⊥Þ1 the
multiplicative potential (1 is the identity operator). Let us
consider the initial condition

ψ ISOðr⊥Þ¼ψ evenðxÞψ evenðyÞ; ψ evenðxÞ¼
1
ffiffiffi
π4

p e−x
2=2 ð3Þ
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The shape of Δðr⊥Þ depends on jψ ISOðr⊥Þj2. Indeed, since
the square of an absolute value is an even function, all the
first derivatives in Eq. (3) vanish—hence Δðr⊥Þ ≃ Δ2

0 −
1
2
Δ2

2jr⊥j2 where Δ2
0 ¼ 1=4σ2 and Δ2

2 ¼ 1=2
ffiffiffi
π

p
σ3. More

details are reported in the Supplemental Material [70].
In the defocusing case (n2 < 0), Fig. 1(a) shows the

transverse profile of the solution of Eq. (1) with the initial
condition Eq. (3). Figure 1(b) exhibits the central part
of the symmetric nonlinear potential K � jψ j2 without
approximations (but for a high value of σ), while
Fig. 1(c) reports the longitudinal profile on x, z (equal
to the profile on y, z), showing the side view of the beam
propagation. The corresponding Hamiltonian reads Ĥ¼
PΔ2

0þĤRHOðpx;xÞþĤRHOðpy;yÞ, where ĤRHOðpx;xÞ¼
1
2
p̂x

2−ðγ2=2Þx̂2 is the 1D reversed harmonic oscillator

(RHO) Hamiltonian of frequency γ ¼ ffiffiffiffi
P

p
Δ2. Once moved

to ϕðrÞ ¼ eiPΔ
2
0ψðrÞ, the Schrödinger equation becomes

i∂zϕðrÞ ¼ ½ĤRHOðpx; xÞ þ ĤRHOðpy; yÞ�ϕðrÞ, which is
completely separable. In bra-ket notation

i
d
dz

jϕðzÞi ¼ ĤISOðp⊥; r⊥ÞjϕðzÞi;
ĤISOðp⊥; r⊥Þ ¼ ĤRHOðpx; xÞ ⊗ 1y þ 1x ⊗ ĤRHOðpy; yÞ;

jϕðzÞi ¼ jϕevenðzÞix ⊗ jϕevenðzÞiy; ð4Þ

with ⊗ the tensorial product, no more explicitly written
hereafter. The solution of Eq. (4) lives in a tensorial product
between two 1D rigged Hilbert spaces. Indeed, if we
consider the evolution operator ÛðzÞ ¼ e−iĤz such that
jϕðzÞi ¼ ÛðzÞjϕð0Þi, for Eq. (4) we obtain jϕðzÞi ¼
e−iĤRHOzjψ evenixe−iĤRHOzjψ eveniy. The representation of

jϕevenðzÞix;y ¼ e−iĤRHOzjψ evenix;y in terms of GVs was

already studied and was also already demonstrated to
describe 1D DSWs in thermal media [25,26,28,35,56].
It is jϕevenðzÞix;y ¼ jϕG

NðzÞi þ jϕBG
N ðzÞi, with jϕG

NðzÞi ¼P
N
n¼0 e

−γ=2ð2nþ1Þzjf−n ihfþn jψ eveni the decaying superposition
of Gamow states jf−n i, corresponding to the energy levels
ERHO
n ¼ iðγ=2Þð2nþ 1Þ, and jϕBG

N ðzÞi the background
function, both belonging to the same rigged Hilbert space
(see the Supplemental Material [70] for more details).
We consider also the following asymmetric initial

condition:

ψANIðr⊥Þ ¼ ψoddðxÞψ evenðyÞ; ψoddðxÞ ¼ −
ffiffiffi
2

p
ffiffiffi
π4

p xe−x
2=2;

ð5Þ

ψ evenðyÞ ¼ ð1= ffiffiffi
π4

p Þe−y2=2 as in Eq. (3). In this case, Eq. (2)
is reduced to Δðr⊥Þ ≃ Δ2

0 þ 1
2
Δ2

1x
2 − 1

2
Δ2

2y
2, with Δ2

0 ¼
1=4σ2, Δ2

1 ¼ 1=4σ4, and Δ2
2 ¼ 1=ð2 ffiffiffi

π
p

σ3Þ.
The consequent anisotropy appears evident: not only the

initial condition presents a ZS, but also the nonlinear
potential exhibits different behaviors along the x, y direc-
tions. We define the anisotropy dimming DA as a quantity
that is equal to one when the nonlinear potential is
completely symmetric and is negative when ZS arises:

DA ¼ ∂2
yΔjr⊥¼0

∂2
xΔjr⊥¼0

: ð6Þ

The anisotropy dimming corresponding to the initial
condition ψANI is DA ¼ −2σ=

ffiffiffi
π

p
. Since Lnloc ∝

ffiffiffiffiffiffiffiffijn2j
p

[35], one obtains DA ∝ −
ffiffiffiffiffiffiffiffijn2j

p
.

Simulations corresponding to the asymmetric initial
condition are illustrated in Fig. 2. Figure 2(a) shows the
anisotropic DSWs, the solution of the NLSE, Eq. (1), with

FIG. 1. Solution of the NLSE, Eq. (1), with a symmetric initial
condition, Eq. (3), for P ¼ 4 × 106 and σ ¼ 120 in arbitrary
units: (a) shows the intensity transverse profile at z ¼ 1; (b)
exhibits the symmetric nonlinear potential; (c) reports the
intensity longitudinal outline, showing the side view of propa-
gation on the plane ðx; zÞ equal to one on the plane ðy; zÞ.

FIG. 2. Solution of theNLSE, Eq. (1), with an asymmetric initial
condition, Eq. (5), forP ¼ 4 × 106 and σ ¼ 120 in arbitrary units:
(a) shows the intensity transverse profile at z ¼ 1; (b) exhibits the
asymmetric nonlinear potential; (c) reports the intensity longi-
tudinal outline on the plane ðx; zÞ with the zero singularity.
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the initial condition Eq. (5). Figure 2(b) gives numerical
proof of the nonlinear potential anisotropy: the ðx; yÞ-plane
origin corresponds to a saddle point with a locally increas-
ing profile along x > 0, y < 0 and a locally decreasing
outline along x < 0, y > 0. Figure 2(c) shows the side-view
intensity pattern with ZS in a neighborhood of x ¼ 0 during
propagation.
The presence of the saddle point in the nonlinear

potential in Fig. 2 changes the final model when, through
highly nonlocal approximation, we map the NLSE into the
quantumlike linear Schrödinger equation. From the expres-
sion of Δðr⊥Þ above, for ϕðrÞ ¼ eiPΔ

2
0ψðrÞ we obtain

i
d
dz

jϕðzÞi ¼ ĤANIðp⊥; r⊥ÞjϕðzÞi;
ĤANIðp⊥; r⊥Þ ¼ ĤHOðpx; xÞ1y þ 1xĤRHOðpy; yÞ;

jϕðzÞi ¼ jϕoddðzÞixjϕevenðzÞiy; ð7Þ

where ĤHOðpx;xÞ¼1
2
p̂x

2þðω2=2Þx̂2 is the one-dimensional
harmonic oscillator (HO) Hamiltonian with ω ¼ ffiffiffiffi

P
p

Δ1.
The solution of Eq. (7) is the tensorial product of
jϕoddðzÞix ¼ Pþ∞

n¼0 e
iðω=2Þð2nþ1ÞzjΨHO

n ihΨHO
n jψoddi, where

jΨHO
n i are ĤHO eigenstates corresponding to the energy

levels EHO
n ¼ ðω=2Þð2nþ 1Þ [55], and jϕevenðzÞiy ¼

jϕG
NðzÞi þ jϕBG

N ðzÞi.
Evidence of the presence of GVs is given in Fig. 3. By

defining

Γn ¼ γð2nþ 1Þ; ð8Þ

we look for the first two quantized decay rates Γ0;2
(the even Gaussian initial function only leads to even

energy levels) in the longitudinal propagation in
y direction. Indeed, if one computes the intensity of the

y part, one finds hϕevenðzÞjϕevenðzÞiy ≃N≫0hϕG
NðzÞjϕG

NðzÞi ¼P
N
n¼0 e

−Γnzjhfþn jϕevenij2. Figure 3(a) shows numerical sim-
ulations of the nonlinear evolution. We seek decaying states
by fixing x ¼ 2.29 a little distant from the shock gap and
report the corresponding intensity in the y–z plane. The
pink line is equivalent to x ¼ y ¼ 2.29. Figure 3(b) exhibits
jϕðx ¼ 2.29; y ¼ 2.29; zÞj2, exponentially decaying. Two
exponential fits demonstrate the GV occurrence: the fun-
damental Gamow state represents the plateau with decay
rate Γ0 ¼ 1.51, whereas the first excited one interpolates
the peak with decay rate Γ2 ¼ 7.51. We stress that the rule
Γ2=Γ0 ¼ 5 is respected, as generally defined in Eq. (8).
Our experiments are performed in isotropic thermal

media (m-cresol/nylon solutions with 3.54% of nylon
concentration [59], and hemoglobin solutions from lysed
human red blood cells with a concentration of about
15 million cells per ml [33]), with both symmetric (in
phase) and asymmetric (out of phase) initial conditions for
the input beam. Experimental details can be found in the
setup description in the Supplemental Material [70].
Figure 4 reports the experimental results obtained with
the m-cresol/nylon thermal solution, where Fig. 4(a),(b) is
from the input beam (enlargement of intensity and phase
patterns at initial power P̄ ¼ 2 mW and waist
W0 ¼ 25.9 μm). The input beam presents a phase discon-
tinuity of π along x ¼ 0, as can be seen clearly from the
magnified interferogram in Fig. 4(b). Under such an initial
condition, wave breaking into asymmetric shock waves
is observed at an appropriate level of nonlinearity, which

FIG. 4. Observation of wave dynamics in m-cresol/nylon
thermal solution. (a) and (b) are the magnified intensity profile
and phase pattern of the input beam under an out-of-phase
condition. (c) is the 3D view of the splitting shock wave, where
barriers and the gap are clearly visible. Middle and bottom rows
are in-phase (d)–(g) and out-of-phase (h)–(k) output transverse
intensity profiles at different initial powers (from left to right:
5 mW, 35 mW, 73 mW, and 112 mW).

FIG. 3. GVs’ signature. From Fig. 2, in the same conditions,
(a) is the y, z profile at fixed x ¼ 2.29. Intensity along the
pink line, i.e., jϕðx¼2.29;y¼2.29;zÞj2¼hϕevenðzÞjϕevenðzÞiy¼P

N
n¼0e

−Γnzjhfþn jϕevenij2, is plotted in (b) [Eq. (8) quantized decay
rates]. The continuous lines represent the first two exponential
functions of the summation above that fit the decaying part: the
red line is the fundamental GV with decay rate Γ0, and the blue
line is the first excited GV with decay rate Γ2.
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corresponds to our theoretical prediction in Fig. 2. A typical
example is shown in Fig. 4(c), where the ZS can be seen
clearly from the 3D plot. In the middle and bottom rows, we
compare directly the beam dynamics observed for in-phase
(middle row) and out-of-phase (bottom row) excitations
under different levels of nonlinearity (as controlled by the
input power). The output beam exhibits diffraction at a low
power [Fig. 4(d), (h)] but evolves into an overall shock
profile at high powers [Figs. 4(e)–4(g), 4(i)–4(k)]. The
difference between the two excitation conditions is evident:
the in-phase beam leads to a symmetric shock wave
[Figs. 4(e)–4(g)], but the out-of-phase beam evolves
into two parts with a clear barrier surrounding the gap
[Figs. 4(i)–4(k)]. It is important to note that, while the
whole profile expands, the gap between two parts
remains nearly constant at a fixed power during propaga-
tion [the measured gap sizes for Figs. 4(h)–4(k) are
ð15.4� 1.6Þ μm, ð12.3� 1.6Þ μm, ð10.8� 1.6Þ μm, and
ð12.3� 1.6Þ μm]. This represents the first realization of
what we define as anisotropic DSWs: an annular collapse
singularity with an initial ZS that generates two barriers of
light intensity around a constant gap in the middle of the
beam. Despite the medium isotropy, the oddity of the initial
condition generates an anisotropic final transverse profile.
We point out that the formation of anisotropic DSWs

with distinct barriers depends on the strength of the self-
defocusing, as stressed by the DA definition in Eq. (6). For
comparison, we perform similar experiments with a differ-
ent thermal solution of hemoglobin (from lysed red blood
cells), which also exhibits strong optical nonlinearity [33].
The results are shown in Fig. 5. Clearly, although the out-
of-phase excitation develops asymmetric wave breaking
[Fig. 5(h)], there is no barrier around the gap, even when
the power is increased to 275 mW.
Z-scan measurements [71] of n2 for both media are

reported in the Supplemental Material [70]. The measured
Kerr coefficients are n2 ¼ −3.9 × 10−8 cm2=W for hemo-
globin and n2 ¼ −1.440 × 10−6 cm2=W for m-cresol/
nylon, indicating that the hemoglobin nonlinearity is nearly
2 orders of magnitude smaller. As such, the asymmetric

shock barrier cannot be achieved in the hemoglobin
solutions before thermal convection takes place.
Moreover, the final anisotropy dimming DA for hemoglo-
bin is one order of magnitude larger than the one for
m-cresol/nylon [Eq. (6)]. These facts quantitatively explain
the experimental need for giant nonlinearities in order to
appreciate the anisotropic DSWs.
We point out that a few factors could account for the

absence of evident anisotropic shocks in the hemoglobin
solution as opposed to that in the m-cresol/nylon thermal
solution. Apart from a smaller negative nonlinear coeffi-
cient, which slows down the development of the anisotropic
shock, the differences in nonlocal response [72] and
thermal convection [67] also contribute to the different
beam dynamics in Fig. 5. In addition, we emphasize again
that the asymmetry observed here results solely from the
input beam condition, not the medium response itself.
We have proven that the interplay of a trapping (har-

monic oscillator) and an antitrapping (reversed harmonic
oscillator) potential generates a novel kind of dispersive
shock waves, with the simultaneous presence of annular
singularities and a shock gap enclosed by intense light
barriers. The use of a thermal medium with a giant Kerr
coefficient such as the m-cresol/nylon solution allows us to
access an extremely nonlinear, highly nonlocal regime and
perform accurate experiments to examine the asymmetric
DSW dynamics. We modeled the outcoming dynamics
through an advanced theoretical description in rigged
Hilbert spaces by means of time asymmetric quantum
mechanics, proving its intrinsic irreversibility. Our results
not only confirm previous studies on the theoretical
framework of DSWs in a highly nonlocal approximation
and the giant nonlinear response of m-cresol/nylon but also
disclose fundamental insights on the propagation of dis-
persive shock waves with a singular initial intensity profile
in highly nonlinear nonlocal environments. We believe that
this work can be a further step toward the description of
complex annular collapse singularities where inverse scat-
tering transform, Whitham modulation, and hydrodynamic
approximation cannot provide descriptions as accurate as
the ones given by time asymmetric quantum mechanics.
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FIG. 5. Observation of wave dynamics in the hemoglobin
solution. First (a)–(d) and second (e)–(h) rows show in-phase
and out-of-phase output transverse intensity profiles, respec-
tively, at different initial powers (from left to right: 5 mW,
150 mW, 233 mW, and 275 mW).
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