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Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping
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We introduce the concept of spatial spectral phase gradient, and demonstrate, both theoretically and
experimentally, how this concept could be employed for generating single- and multipath self-accelerating
beams. In particular, we show that the trajectories of the accelerating beams are determined a priori by different
key spatial frequencies through direct spectrum-to-distance mapping. In the nonparaxial regime, our results
clearly illustrate the breakup of Airy beams from a different perspective, and demonstrate how circular, elliptic,
or hyperbolic accelerating beams can be created by judiciously engineering the spectral phase. Furthermore, we
found that the accelerating beams still follow the predicted trajectory also for vectorial wave fronts. Our approach
not only generalizes the idea of Fourier-space beam engineering along arbitrary convex trajectories, but also
offers possibilities for beam or pulse manipulation not achievable through standard direct real-space approaches
or by way of time-domain phase modulation.
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Self-accelerating beams, featured by a transversely bending
trajectory, have attracted a great deal of attention. Such
interest was initially stimulated by the intriguing properties
of Airy waves, first introduced in quantum mechanics [1], and
recently in optics [2,3]. Indeed, self-accelerating Airy waves
have been demonstrated and proposed for a host of potential
applications in optics and a variety of other settings including,
for example, optical trapping and manipulation [4], plasma
guidance [5], generation of light bullets [6], and routing of
electrons [7]. An ideal Airy beam propagates nondiffractively
with a small bending angle in the paraxial limit, but it tends
to break up when bending into a large angle. Furthermore,
nonparaxial self-accelerating beams that can bend along
circular trajectories were predicted and demonstrated very
recently [8–10]. Thus far, much of the progress in harnessing
self-accelerating beams relied on specific monotonic phase
modulations imposed in either real or Fourier space, leading to
single-path propagation only [11–15]. It is then natural to ask:
What would happen if a nonmonotonic phase were introduced?
Is it then possible to develop a generalized approach through
spectral phase engineering that could give rise to large-angle
self-accelerating beams with arbitrary trajectories? Although
the angle of a ray is related to the spatial frequency, such
an intuitive picture requires a detailed study as well as
further experimental grounding in order to properly explain
the properties of self-accelerating beams.

In our recent work, we showed that it is possible to map the
spectrum into the propagation distance via the use of suitable
nonlinearities [16], suggesting a possible direct mapping
between the spectrum and the path of self-accelerating beams.
Such a feature would be even more desirable if it could be
applied in the linear regime. By noticing that the spectra
of all self-accelerating beams reported so far are composed
of different spatial frequencies whose phases have a specific
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relationship, we are readily reminded of nonstationary signals
in the time domain. For example, in signal processing, the
gradient spectral phase has been successfully introduced to
describe the group delay [17]. Since the concept of group
delay (indeed related to time) can be analogous to that of
position in the spatial domain, it is then possible to perform
the direct mapping from the spectrum to the beam path by
introducing the concept of spatial spectral phase gradient. Such
a linear spectrum-engineered position mapping has certainly
several benefits towards the understanding and control of
self-accelerating beams.

In this paper, we propose and demonstrate a versatile ap-
proach to generate single- or multipath self-accelerating beams
through direct spectrum-to-distance mapping. We found that
the path of a self-accelerating beam at different propagation
distances is mediated by different key spatial frequencies,
as confirmed by our direct experimental observation. Such
a principle is the origin of many properties associated with
accelerating beams, including self-bending and self-healing.
Multiple trajectories (each of them being a convex curve) of
self-accelerating beams are established with proper spectral
phases and are managed by different parts of the spectrum.
Under the nonparaxial condition, unlike circular, elliptical,
and hyperbolic trajectories that persist at large bending angles,
our scheme reveals clearly that the cubic phase employed for
the paraxial Airy beams leads to three interfering trajectories
that break down the Airy beams. In essence, our scheme not
only can trace the beam path for a known phase mask, but
also permits imposing virtually an arbitrary spectral phase
configuration to achieve any desired convex trajectory. Fur-
thermore, we demonstrate that the generalized method is also
applicable for analyzing vector self-accelerating beams, where
the intensity patterns including two polarization components
are found to follow the trajectories predicted by our model.

As a proof of principle for our approach, let us consider a
simple and realistic scenario: We modulate (via the phase) a
beam in the x ′-y ′ (i.e., the Fourier) plane [Fig. 1(a)], rather than
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FIG. 1. (Color online) (a) Sketch of the experimental geometry
used for the generation of self-accelerating beams. (b)–(e) Calculated
spectrum (b), (d) and beam propagation (c), (e) with two typical
examples of imposed cubic (second row) and sinusoidal (third row)
phase under the paraxial approximation. White lines in (b), (d) mark
the key frequency corresponding to the main lobe of the accelerating
beams in (c), (e), while the predicted beam trajectories are traced
by the dashed white curves in (c), (e). The inset in (c) shows the
transverse intensity (arbitrary units) profiles at z = 0 as calculated
from the frequency range under the constrains |kx | � 0.002k (upper
panel) and |kx | � 0.043k (bottom panel). The numbers in (d), (e)
indicate the correspondence between the key spectral ranges and the
resulting trajectories. (All calculated trajectories are slightly shifted
with respect to the main lobes associated to the beam evolutions).

in the real space [11,12], to generate a self-accelerating beam.
In the one-dimensional (1D) case, a cylindrical lens (with
focal length f ) and a y ′-independent phase modulation are
employed. By setting the polarization of the initial beam (wave
number is k) along the y ′ axis, the spectral evolution under the
paraxial condition is described by the simple expression

Ẽ(kx,z) = exp[iμ(kx,z)], (1)

where μ (kx,z) = −k2
xz/(2k) + ρ (kx), kx = x ′k/f is the spa-

tial angular frequency, and ρ(kx) is the imposed phase in
the x ′-y ′ plane. As mentioned before, while in the time domain
the spectral phase gradient is related to the group delay [17],
in the spatial domain the same quantity is associated with the
local position of the light beam, i.e.,

x = −∂μ(kx,z)/∂kx = kxz/k − ρ ′ (kx) . (2)

In a finite spatial regime defined by �x, the beam is
mainly composed (in the spectral picture) by the frequency
components �kx∂

2μ (kx,z) /∂k2
x . Since the weight of each

kx component is identical [see Eq. (1)], the spectral density
(�kx/�x) within �x is 1/|∂2μ (kx,z) /∂k2

x |. Thus the beam
can reach a “spectral density singularity” (which is indeed
related to the trajectory of self-accelerating beams) when the
condition ∂2μ (kx,z) /∂k2

x = 0 is satisfied, i.e.,

ρ ′′(kx) = z/k. (3)

By solving the above equation, the key spatial frequencies
responsible for the beam paths (denoted by kxc) can be obtained
as a function of z. Let us first discuss a simple case in

which we assume ρ ′′ (kx) to be (smoothly) monotonically
dependent on the frequency. Under this assumption, the key
frequency determined by Eq. (3) must be single valued along
the propagation, indicating a single path of a self-accelerating
beam. Using this finding together with Eq. (2), one can readily
obtain that the trajectory of the beam follows a convex curve.
A typical example for the previous discussion is shown in
Figs. 1(b) and 1(c) by analyzing a cubic phase ρ (kx) =
−(αkx/k)3 (α = 200) related to the well-known Airy beam
case [2]. Replacing kx in Eq. (2) with the key frequency kxc =
−k2z/(6α3) [plotted in Fig. 1(b) and obtained from Eq. (3)], the
trajectory is expected to follow a parabolic path −kz2/(12α3),
as further confirmed through the beam evolution calculated
by numerically Fourier transforming Eq. (1) [Fig. 1(c)]. If we
discard all the sublobes of the beam, the spatial frequency of
the residual main lobe obviously evolves as the key frequency
during propagation [Fig. 1(b)]. More precisely, as a result of
the additional influence of the spectral components far from
the key frequency, the location of the intensity maximum (IM)
tends to slightly deviate from the one relating to the “spectral
density singularity”. For instance [see the inset in Fig. 1(c)],
the spectral density singularity is estimated to appear at x

= 0, which almost matches the IM calculated from a small
spectral segment around the key frequency (upper panel), but
has a slight dislocation with respect to the IM corresponding
to a large enough frequency scale (bottom panel). In spite
of the slight mismatch (which has been studied in detail
in [11]), the trajectory calculated by Eqs. (2) and (3) perfectly
predicts the path of the main hump [Fig. 1(c)]. Coming back
to the general case of a single beam path, illustrated by the
example of a cubic phase applied, the main hump at different
propagation distances is managed by different key spatial
frequencies. This “frequency-uncorrelated” propagation of the
main hump is the origin of the self-healing properties [18]
typically associated to self-accelerating beams, indicating that
even if the main lobe is filtered at a certain position, it tends to
regenerate along propagation, so that its profile, particularly
far away from the blocker, is not influenced.

Next, we consider a more general case in which ρ ′′ (kx) is
not necessarily a monotonic function. Thus two or more key
frequencies tend to be involved, leading to multiple beam
paths. As a typical example, the sinusoidal phase ρ (kx) =
130 sin (80kx/k) is analyzed and the results are shown in
Figs. 1(d) and 1(e). As expected, the key frequencies are now
multivalued [see the curved lines in Fig. 1(d)]. Accordingly,
three trajectories are calculated by inserting the key frequen-
cies into Eq. (2) and each of them is managed by different
parts of the spectrum [the same number in the notation is used
for their correspondence in Figs. 1(d) and 1(e)]. They predict
the beam path obtained by numerically Fourier transforming
Eq. (1). Keeping the main lobe of the second branch in
Fig. 1(e), the residual spectral power follows the corresponding
key frequency [Fig. 1(d)]. Such a correspondence is also
observed (not shown here) for the other two beam paths.
Although different parts of the frequency are responsible for
different paths of the multitrajectories, the key frequency is still
monotonic in any of the single trajectories. Therefore, each
beam path manifests the same features just as a single-path
beam does.
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FIG. 2. (Color online) Experimental results of self-accelerating
beams obtained with a cubic (top panels) and a sinusoidal (bottom
panels) phase similar to that presented in Fig. 1(a) and 1(d). Spectral
phase distribution: (b), (e) single and triple trajectories of the
accelerating beams resulting from (a) and (d), respectively; (c) the
residual spectrum of the filtered main hump in (b); (f) different
spectral ranges responsible for different trajectories in (e).

The above analysis implies that the beam paths are
predictable for a known spectral phase through employing
the theory formulated via Eqs. (2) and (3). To verify this,
we perform the experiment in a setup similar to Fig. 1(a).
A phase-only spatial light modulator (SLM) is placed at the
front focal plane of a cylindrical lens (f = 100 mm) in
order to modulate a broad beam (featured by a wavelength
of 633 nm). A camera positioned behind the lens is used
to record both the beam evolution and its spatial spectrum
(obtained by adding an additional cylindrical lens). Firstly, a
properly engineered cubic phase [19], as shown in Fig. 2(a),
is imposed on the beam. As is well known, the resulting Airy
beam propagates along a parabolic trajectory [Fig. 2(b)]. Akin
to the simulation in Fig. 1(b), the corresponding spectrum for
the filtered main hump shifts linearly with the propagation
distance [Fig. 2(c)]. This offers direct evidence that the main
hump of the self-accelerating beam corresponds to different
spatial frequencies at different propagation distances. In the
linear case, such a physical pattern can only be discovered
through getting rid of the sublobes of the beam. However,
in a nonlinear environment, it is directly revealed by the
shifting of certain reshaped spectral defects [16]. Secondly, we
employed a sinusoidal phase function, plotted in Fig. 2(d), to
generate multipath trajectories featured by three main humps.
The measured beam propagation agrees very well with our
predictions [Fig. 2(e)]. For example, when we alternatively
block two beam paths in the real space, we find that each
of the remaining beam paths is managed by different parts
of the spectrum [Fig. 2(f)], as expected by the analysis in
Fig. 1. Although the examples presented here are for trajectory
prediction from a given phase function, we can also calculate
the phase structure related to any desired (convex) trajectory.

The above analysis is also applicable to the
nonparaxial condition, where the spectrum evolution

FIG. 3. (Color online) Self-accelerating beams resulting from
direct spectrum-to-distance mapping under the nonparaxial condition.
(a) and (b) show the half-Bessel and Airy-like beam trajectories
obtained by applying an inverse sinusoidal and a cubic phase,
respectively; (d) and (e) show the elliptic and hyperbolic beam
trajectories obtained with the spectral phases plotted in (c).

of a beam takes the following form: Ẽnp(kx,z) =
exp[i(k2 − k2

x)1/2z + iρ(kx)]. Using a similar procedure
as that used in Eq. (1), the beam trajectories are also
predictable for a given phase ρ(kx) and they manifest the
same behaviors as in the paraxial case: Different trajectories
correspond to different parts of the spectrum and the key
frequency along a single trajectory monotonically varies
during propagation. These features restrict all the beam
paths to follow convex trajectories. Two typical examples are
shown in Figs. 3(a) and 3(b). One corresponds to the inverse
sinusoidal function ρ (kx) = r sin−1 (kx/k) used to generate
Bessel-like self-accelerating beams [10]. Using our method,
we can still predict that the beam will follow a circular
trajectory Tr (z) = −(r2/k2 − z2)1/2, as shown in Fig. 3(a).
Differently from the work in Ref. [10], no spectral amplitude
modulation is employed here. The other example is associated
with a cubic phase (5kx/k)3. As we know, in the paraxial
approximation, this phase corresponds to an Airy beam [2].
However, in the nonparaxial case, such a phase structure
leads to a beam showing three main trajectories, whose
interference induces a strong deformation of the Airy beam
[Fig. 3(b)]. This basically explains why Airy beams cannot
persist under the nonparaxial conditions from a perspective
not apparent in all previous studies. We can see here that, in
the nonparaxial regime, a monotonic phase is also possibly
related to multitrajectories.

Conversely, beam paths can be controlled by producing
a proper phase modulation. As a typical example, Fig. 3(c)
shows the numerically obtained phase shape relative to
elliptical and hyperbolic trajectories, i.e., a(b2 − z2)1/2/b and
c(d2 + z2)1/2/d, respectively. All frequencies participate in
forming elliptical self-accelerating beams, while only a part
of the frequencies [kx/k � |c/(c2 + d2)1/2|] is responsible
for the beam trajectory of hyperbolic self-accelerating beams
[Fig. 3(c)]. Typically, the values a = 10 μm, b = 30 μm,
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FIG. 4. (Color online) Vector self-accelerating beams obtained
under the nonparaxial condition. (a) Shows the key frequency
distribution, (b) the total intensity of the beam, (c) and (d) the intensity
patterns for the x and z components, respectively. The numbers in
(a), (b) indicate the correspondence between the key spectral ranges
and the resulting trajectories. Note that (b) is given by the sum of (c)
and (d).

c = d = 30 μm are employed. By imposing the estimated
phases in the frequency domain, the main hump of the
beams follows the desired trajectories, as shown in Figs. 3(d)
and 3(e), respectively. Compared with the method used in
[14] where the phase required for the beam to follow an
elliptical path is obtained by solving the complex angular
Mathieu functions, the approach shown here is much easier
and more straightforward in manipulating the trajectories
of self-accelerating beams. For multipath self-accelerating
beams along two or more (different) trajectories, the procedure
is similar, provided that the spectral portions associated to
different trajectories are nonoverlapping.

In the previous analysis, we only discussed the case of
scalar (corresponding to a y ′-polarized input) self-accelerating
beams. However, if the initial input depicted in Fig. 1(a)
is x ′ polarized, the polarization should be taken into
account through the use of the Jones matrix [20]. Then the
spectral evolution of a beam is composed of both x and
z components: Ẽx = k−1(k2 − k2

x)1/2Ẽnp, Ẽz = −k−1kxẼnp.

Although additional amplitude modulations are included in
the above equations, the previous method (used to analyze
the scalar nonparaxial case) is still applicable, as the spatial
spectra in Ẽx and Ẽz are complementary. Figure 4 shows a
typical example associated with a sinusoidal phase ρ(kx) =
100 sin(2πkx/k). The key frequencies for both components
are solved by only considering the phase term [Fig. 4(a)]. As
expected, the calculated trajectories have a good matching
with the beam evolution of the total intensity [Fig. 4(b)].
One can clearly tell the complementarity in terms of fields
of the x and z components by comparing Figs. 4(c) and 4(d)
with their sum in Fig. 4(b). These results indicate that our
method is still applicable for vector self-accelerating beams.
Straightforwardly, it can be envisaged that this scheme is useful
for analyzing the three dimensional case under the nonparaxial
condition, where the polarization issue always needs to be
considered.

In summary, we demonstrated a generalized scheme to
study single- or multipath self-accelerating beams through
spectrum-engineered position mapping in both paraxial and
nonparaxial conditions. In analogy to what happens in the
time domain, the gradient of the spatial spectral phase is
related to the beam location. In this framework, we found
that different trajectories are associated to different parts of
the spectrum, and in a single trajectory, the key frequency
for the main hump of the beam monotonously varies along
propagation. The properties of self-accelerating beams can
be now understood in terms of frequency. In the nonparaxial
condition, we clearly illustrate the reason for the breakup of
Airy beams, whereas any large-angle self-accelerating beam
along a convex trajectory can be generated through our method.
What we believe is even more important is that our scheme
can also be applied to vector self-accelerating beams. There
are many fundamental issues that merit future investigations,
such as how to extend our method to incoherent light, and how
to manipulate spatiotemporal self-accelerating beams [6,21].
In turn, such interesting questions can be easily generalized
and lead to a better understanding of other self-accelerating
waves present in nature.
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