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We propose and demonstrate the generation of periodic self-accelerating beams through both phase and amplitude
modulation in the Fourier space. For small amplitude variations, an accelerating beam still follows a smooth
convex trajectory, which can be traced by acting on the spectral phase only. However, large modulations such
as those generated from the Heaviside function with a zero amplitude distribution partially modify the convex
trajectory due to the appearance of straight-line paths. Furthermore, periodic self-accelerating beams along
convex trajectories are realized by employing an array of “spectral wells” in both the paraxial and nonparaxial
regimes. © 2013 Optical Society of America
OCIS codes: (070.7345) Wave propagation; (070.4790) Spectrum analysis; (050.1970) Diffractive optics.
http://dx.doi.org/10.1364/OL.38.003387

Curved or self-accelerating light beams have recently re-
ceived a great deal of attention, triggered by the introduc-
tion of nondiffracting Airy beams capable of traveling
along a parabolic trajectory [1–3]. Driven by fundamental
interest as well as potential applications, the judicious
design of self-accelerating beams has been expanded
from the initial realization of a simple parabolic trajec-
tory to the generation of an arbitrary convex trajectory,
through phase engineering in both the real and Fourier
spaces and under both paraxial and nonparaxial condi-
tions [4–13]. Very recently, accelerating beams along
periodic rather than smooth trajectories have also been
proposed [9] and observed [8,14] in the nonparaxial
regime. The realization of such “zigzag” or “snake-like”
optical beams through different approaches [15–17] is
of particular interest for a variety of applications.
In this Letter, we generate periodic self-accelerating

beams by engineering the spectrum of a light beam. As
mentioned before, such beams have been realized by ap-
plying both spectral phase and amplitude modulations in
the nonparaxial case [8,14], but here we give a general
and detailed explanation on these beams in both paraxial
and nonparaxial conditions via a spectral language,
hence leading to a method to engineer periodic acceler-
ating beams by merely rearranging the straight-line
propagations.
In the paraxial limit, the spectral evolution of a coher-

ent monochromatic light along the z axis can be
described as

~E�kx; z� � A�kx� exp�−ik2xz∕�2k� � iρ�kx��; (1)

where A�kx� ≥ 0 is the spectral amplitude, kx is the trans-
verse wave number, k is the vacuum wave number, and
ρ�kx� is an imposed smooth phase in the spectral domain.
In our previous work [7] on the generation of self-
accelerating beams through Fourier-space phase engi-
neering, A�kx� is assumed to be a unit constant. Then,
the spatial variable can be described as

x � kxz∕k − ρ0�kx�; (2)

where x is the position in the real space, while the super-
script 0 represents the first derivative with respect to kx.
From Eq. (2) we can infer that the spectral density
D�kx� � dkx∕dx is, within a small area dx, equal to
1∕jμ00�kx�j, where μ�kx� � −k2xz∕�2k� � ρ�kx�, as seen
from Eq. (1). Consequently, a spectrum-to-distance map-
ping can be realized when the spectral density becomes
singular, i.e.,

μ00�kx� � −z∕k� ρ00�kx� � 0; (3)

from which one can find a specific key frequency that is
mapped into the propagation distance, leading to the pos-
sibility of transforming a spectral fluctuation into a longi-
tudinal oscillation associated with an accelerating beam
[7]. By solving Eqs. (2) and (3), the trajectory of a self-
accelerating beam with a homogeneous spectral ampli-
tude can thus be obtained. However, when A�kx� is
not a constant in Eq. (1), the above analysis needs to
be revisited. Since the weight of each frequency compo-
nent is no longer uniform, the spectral density D�kx�
takes the new form of A�kx�∕jμ00�kx�j. Provided that
the spectral amplitude is larger than zero, i.e.,
A�kx� > 0, and the amplitude variation is small, the analy-
sis related to Eq. (3) is still valid. We note, however, that
this approach would not work when A�kx� is 0 for certain
values of kx. To study the influence of amplitude modu-
lations on self-accelerating beams, we start from the
simplest case—a Heaviside-shaped spectrum, i.e.,

A�kx� �
�
1 kx ≤ kx0
0 kx > kx0

: (4)

We still assume ρ00�kx� to be a monotonically increasing
function of kx, which results in a single convex trajectory
[schematically shown by the solid line in Fig. 1(a)] for the
self-accelerating beams under test [7]. For A�kx� � 1,
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Eq. (3) can be still used to determine the trajectory in the
range z ≤ z0 � kρ00�kx0�. However, at z > z0, the beam
path cannot be described by the curved trajectory any
more. For these distances, the spectrum density ap-
proaches the maximum only when jμ00�kx�j is the mini-
mum at kx ≤ kx0. Considering that ρ00�kx� increases
monotonically, μ00�kx� is always less than 0 and it also
increases monotonically for any z > z0:jμ00�kx�j is sche-
matically plotted in Fig. 1(b). Therefore, the spectrum
density reaches the maximum only at the discontinuity
point kx0, for a distance z > z0, where the key frequency
is (always) kx0. Accordingly, the beam path at z > z0 can
be traced via Eq. (2):

x � kx0z∕k − ρ0�kx0�: (5)

Equation (5) is linear with distance, as schematically
shown by the dashed red line in Fig. 1(a). From Eqs. (2)–
(5), one can readily infer that the straight line is tangent
to the curved trajectory at the tangent point z � z0 [18].
Thus, the curved and straight lines join together to form
the trajectory of an accelerating beam provided that its
spectral amplitude has a Heaviside shape. Consequently,
the beam follows a curved path at z < z0 and a straight
path elsewhere. We mention that even if the spectral dis-
tribution is not zero at z > z0, e.g., by adding a constant
on Eq. (4), the generated self-accelerating beam still fol-
lows the same path, since the new amplitude modulation
manifests an equivalent feature as does the Heaviside-
shaped spectral distribution. Similar results can be
obtained with ρ00�kx� being monotonically decreasing
with respect to kx.
In order to corroborate the argument above, let us dis-

cuss a typical spectral phase modulation: the cubic
function ρ�kx� � �a�kx − b�∕k�3 (where a3 � −4 × 106,
b � 0.033k) [19]. Without an appropriate amplitude
modulation, the beam follows the parabolic trajectory
kz2∕�12a3� � bz∕k, as shown in Fig. 2(a). However, in
the presence of a spectral Heaviside distribution (here
kx0 is −0.005k), as expressed by Eq. (4), the beam follows
the parabolic curve only up to z � z0 � 6a3�kx0 − b�∕k2
but then turns into a straight line at z > z0. The beam evo-
lution calculated from Eq. (1) further confirms our ana-
lytical predictions. For the portion related to straight-line
propagation, the beamwidth of the main lobe increases
dramatically [Fig. 2(b)]. By discarding the sublobes,
the residual spectra corresponding to the main lobe of
the beam in Fig. 2(b) are plotted in Fig. 2(c), well match-
ing the analytic results.
We now present the corresponding experimental re-

sults, obtained using a setup similar to the one employed

in our previous work [7]. A spatial phase modulator
(SLM) is placed at the front focal plane of a cylindrical
lens (f � 100 mm) in order to achieve a suitable phase
modulation for the broad beam (λ � 633 nm), while a
camera is employed to monitor the evolution of the
planar beam behind the lens. An amplitude mask (a struc-
ture printed on a transparent paper) is tightly positioned
close to the SLM to create the desired intensity distribu-
tion for the input beam. Our experimental observations,
shown in Figs. 2(d)–2(f)—where each scanned beam is
averaged—are in good agreement with the numerical
results presented in Figs. 2(a)–2(c).

Next, let us extend the previous analysis to more gen-
eral cases. One straightforward extension consists in
modulating the amplitude through a spectral “well”,
i.e., A � 0 for kx1 ≤ kx ≤ kx2 and A � 1 elsewhere, as
shown in Fig. 3(a). By imposing such an amplitude

Fig. 1. (a) Schematics of the beam path composed of straight
and convex lines and (b)

��μ00�� related to a Heaviside-spectral
distribution.

Fig. 2. Numerical simulations (first row) and experimental ob-
servations (second row) of Airy beams generated (a), (d) with-
out and (b), (e) with a Heaviside-shaped amplitude modulation.
(c), (f) Spectral components related to the main lobes in (b) and
(e), respectively. The dashed white lines/curves in (a)–(c) are
calculated from theory.

Fig. 3. Generation of periodic accelerating beams along a par-
abolic curve by employing (a), (b) one spectral well and (c), (d)
an array of spectral wells. (a), (c) k-space amplitude modulation
relative to the results in (b) and (d), where the upper and
bottom panels correspond to numerical and experimental
results, respectively.
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modulation combined with a typical cubic phase modu-
lation �a�kx − b�∕k�3 (where a3 � −6 × 106, b � 0.043k),
the beam trajectory thus generated is composed of
two straight lines in the range 6a3�kx2 − b�∕k2 < z <
6a3�kx1 − b�∕k2 and of a parabolic curve elsewhere, as
confirmed by both our simulations and the experimental
results shown in Fig. 3(b). In fact, for any imposed phase
ρ�kx� with its second derivative being a monotonic func-
tion, the area Δz confined by z1 � kρ00�kx1� and z2 �
kρ00�kx2� is positively correlated to Δkx � jkx2–kx1j. Pro-
vided that Δkx is small enough for a given ρ00�kx�, the “V”
shape formed by the two straight lines approaches the
parabolic curve asymptotically. In this way, the spectral
well does not cause a severe distortion to the convex
trajectory of the generated self-accelerating beam.
Furthermore, one can envision that the “V”-shaped

path may be exploited as an ingredient for constructing
a periodically wiggling beam by using cascaded spectral
wells. As a typical example, we employ a periodic ampli-
tude modulation superimposed to the same cubic phase,
as depicted in Fig. 3(c). Corresponding numerical and ex-
perimental results are shown in Fig. 3(d). As expected,
the main lobe of the beam follows a zigzag rather than
a smooth convex trajectory, yet accelerating as the con-
ventional Airy beam does, with the zigzags matched by a
series of “V”-shaped straight lines as described in Eq. (5).
Similar to the characteristic feature of a “V”-shaped path,
if the width for each spectral well is not large enough, the
oscillation of the main lobe becomes weak or may even
disappear.
In the nonparaxial regime, the previous analysis is still

applicable. Some typical results are shown in Fig. 4.
Our scheme is able to explain, via the spectral lan-

guage, the results observed in the nonparaxial case
[8,14], where both spectral phase and amplitude were
employed. By using a spectrum-to-distance mapping, it
is straightforward to engineer periodic accelerating
beams that can have reduced side lobes as desired [20].
In conclusion, we have studied the combined effect of

spectral phase and amplitude modulations on the

dynamics of self-accelerating beams. We found that,
while the beam path still follows the convex trajectory
induced only by a suitable spectral phase at small ampli-
tude modulations [20], large spectral modulations such
as those from the Heaviside distribution partially modify
the convex trajectory. In particular, the proposed peri-
odic accelerating beams are realized through an array
of spectral structures in the paraxial limit experimentally
and in the nonparaxial regime numerically.
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Fig. 4. Nonparaxial periodic self-accelerating beams. (a) Im-
posed phases and (b)–(d) amplitude modulations employed
for generating periodic accelerating beams along (e)–(g) circu-
lar, elliptic, and parabolic trajectories, respectively.
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