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Abstract: We propose a method for generation of tunable three-dimensional (3D) helical 
lattices with varying helix pitch. In order to change only the lattice helix pitch, a periodically 
varying phase along the propagation direction is added to the central beam – one of the 
interference beams for lattice construction. The phase periodicity determines the helix pitch, 
which can be reconfigured at ease. Furthermore, a helical lattice structure with an interface 
(domain wall) is also achieved by changing the phase structure of the lateral beams, leading to 
opposite rotating direction (helicity) on different sides of the interface. When a Gaussian 
beam is used to probe the bulk lattice, it can evolve into a spiral beam with its helicity varying 
in accordance with that of the lattice. Probing along the interface with two dipole-like optical 
beams leads to unusual propagation dynamics, depending on the phase and size of the two 
beams. This approach could be further explored for studies of nonlinear interface solitons and 
topological interface states. In addition, the helical lattices may find applications in dynamical 
multi-beam optical tweezers. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

In optics, periodic or quasiperiodic waveguide arrays are associated with materials that 
exhibit a refractive index modulation in one or more spatial dimensions. They can 
significantly modify the overall optical properties of the materials as well as strongly affect 
the propagation of light [1–25]. Naturally, an optical beam propagates along a straight line, 
but synthetic photonic structures can support rotational propagation which incorporates more 
interesting dynamics and applications not found in free space or homogenous media [12–24]. 
For instance, a rotating waveguide array can support localized (bulk or edge) modes existing 
even in the linear region, in sharp contrast to localized states in nonrotating arrays that 
typically require a defect or a nonlinearity [17]. In an array of evanescently coupled helical 
waveguides arranged in a graphene-like honeycomb lattice, one-way edge states that are 
topologically protected from back-scattering have been demonstrated [20], driving the active 
field of topological photonics [21]. Indeed, the helical honeycomb photonic lattices could be a 
useful platform to investigate a number of fundamental phenomena such as nonlinear 
topological edge solitons [22,23], anomalous topological phases [24], and photonic 
topological valley Hall edge states [25]. 

To create helical waveguides in experiments, one can directly write them into fused silica 
glass using a femtosecond laser [18,25], or use the optical induction in a nonlinear crystal 
[16,26]. The latter approach has been shown to provide a highly flexible and convenient way 
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to fabricate many different linear and nonlinear optical lattices [3,4]. Generation of helical 
beams (HBs) in free space has also be investigated, and the most common method for 
creating such HBs has been relied on the use of a forked hologram. When the hologram is 
illuminated with a plane wave, the first-order diffracted beams exhibit helical phase structure 
[27]. The inverted Gabor holography principle for tailoring arbitrary shaped 3D beams 
including HBs has also been studied numerically and experimentally [28]. Another typical 
example is the so-called optical solenoid beams, which come from the solutions of the 
Helmholtz equation as a particular superposition of -thm order Bessel beams, propagating 
without diffraction with their principal intensity maximum spiraling around the optical axis 
[29]. Other alternative methods are proposed and developed based on a superposition of 
multiple coherent waves by using interferometric schemes [30–36], spatial light modulators 
[35,36], pinhole arrangements [30,37], colloidal monolayers of dielectric microparticles [38], 
or the Talbot effect [39,40]. 

In most of these studies which use the multi-beam interference, so far the attention has 
been focused on the generation of photonic lattices with different transverse shapes 
(triangular, quadratic, hexagonal or the like), or the formation of corresponding helical 
lattices (HLs) [26,30–37]. The issue of how to control the helix pitch and the spiral direction, 
both important for optical functionalities of HLs [17,20,22,24], have not been fully addressed. 
In this work, we discuss the generation of photonic HLs with controllable helix pitch and 
helical rotation direction based on fine-tuning the parameters in multi-beam interference. In 
particular, we propose a simple method to create an interface between two helical waveguide 
arrays with same or opposite helicities, much desired in the study of edge states and 
topological phenomena. 

2. Theoretical description of multi-beam interference 

The multi-beam interference model involves an optical pattern formed by the superposition of 
multiple non-coplanar beams. The beam pattern depends on the number of beams and their 
associated configuration [33]. Formed by the interference of N  monochromatic noncoplanar 
plane waves, the time-averaged intensity distribution of the pattern can be expressed as 
[23,27–32] 
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is the 

wavevector, -ij i jδφ φ φ= is the phase difference, and ie


denotes the polarization vector. 

As shown in Fig. 1, we assume that there are seven beams ( 1,2 7)ik i =  whose 

wavelengths are all set at 488nmλ = - the one typically used for photorefractive induction of 
photonic lattices [1–4]. The central beam 7k  is along the optical axis ( z  axis) while the side 

beams  ( =1,2 6)ik i   are arranged symmetrically around 7k  at an angle θ  from z  axis 

forming an umbrella-like structure. If we do not consider the central beam 7k , the side beams 

will only form the 2D hexagonal lattice as shown in Fig. 2 (b) at 0z = . When we include 7k  

as a different wave vector component in the direction of the optical axis into the interference 
with other plane waves, the phase singularities of the vortices are effectively transformed into 
the desired helical intensity structure [26,30]. In this case, 3D hexagonal helical lattices can 
be established based on the interference of seven beams. In addition, a phase shift may be 
introduced by elliptical polarization in one or more of the interfering beams to produce 
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compound lattices [30]. Here, we assume that 7k is circularly polarized while the other six 

beams are linearly polarized for simplicity. In general, strontium barium niobate (SBN) 
crystal has been used for the fabrication of optical induction lattices, so we have used the 
refractive index of the medium as 2.3n =  in our numerical simulation. The required beam 
structures or lattice structures are decided by the parameters of the beam, we discuss how to 
achieve novel lattice structures by controlling the beam parameters in the following sections. 

 

Fig. 1. Schematic of interference configuration of seven beams for optical induction of HLs in 

a nonlinear crystal, where ( =1,2 7)ik i   denotes seven beams, the red line arrows and the 

red circular arrow describe the direction of the polarization vector of these beams, and the 
angle θ  is the incidence angle of each beam relative to z-direction. 

3. Reconfigurable HLs and formation of interfaces 

From Young’s theory of interference, we know that the interference of two plane waves can 
produce a fringe pattern with a periodicity inversely proportional to the beam incidence angle. 
So, the angle θ  in our multi-beam interference model may also affect the periodicity of the 

induced lattices. In fact, the relation can be written as = 2 ( 3 sin )hT nλ θ  for the horizontal 

periodicity and 2= (2 sin ( 2))vT nλ θ for the vertical periodicity (helical pitch) [30]. Thus both 

the horizontal periodicity and the helical pitch both change with θ  at the same time. Since for 
most of applications, we just want to control the horizontal or vertical cycles, additional 
control over the interference pattern may be added. Aiming towards this point, let us add a 
vertical phase zP zπ= Λ varying with the propagation direction (along z) to the central beam, 

where Λ is the longitudinal period. Combing Fig. 2 with Fig. 3, when we add an additional 
phase term zP  with 5λΛ = , the pitch changes from 107vT mμ= to 54vT mμ= while the horizontal 

periodicity hT is still kept at 3.9 mμ at =0.02θ π . 
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evolution of an extraordinarily-polarized probe beam u  is described by the nonlinear 
equation with a periodic lattice potential, 

 
2 2

3 0
0 332 2 2

0

1 1
( ) 0.

2 2 1
e

L

Eu u u
i k nn u

z k n x y I u
γ

σ
∂ ∂ ∂+ + − =
∂ ∂ ∂ + +

 (5) 

Here, 0 = 2k π λ , =2.35en is the refractive index corresponding to e-polarized light in the 

crystal, 33 =280 /pm Vγ is the electro-optic coefficient, and we use 0 =120 /E V mm for the 

applied electric field. σ is the nonlinearity coefficient, and LI  denotes a HL structure [3,14–

18,20–26,30–37]. In Fig. 7(b), one can see that the spatial location of maximum intensity of 
the probe beam in 0y =  plane during propagation through the HL at =0.01θ π indeed 

exhibits a spiral feature. Comparing Fig. 7(c) with Fig. 7(b), we can find that the pitch 
decreases at =0.015θ π . The helix pitch of the probe beam varies accordingly with the helix 
pitch of the lattice resulting from the change of angleθ . This indicates clearly the spiral 
waveguide structure has been established in the nonlinear crystal. Interestingly, when the 
same probe beam enters the lattice interface of opposite helicities of Fig. 6, the beam is 
divided into two parts which also show opposite helicities, as shown in Fig. 7(d). The pitch of 
each part is the same as the pitch of the beam in Fig. 7(b) because the incidental angle of the 
probe beam is the same, that is, =0.01θ π . Therefore, it is clear that the incident Gaussian 
beam follows the spiral path because of the action of the helical waveguides. It is worth 
noting that such a spirally guided beam is nearly non-diffracting while propagating along the 
interface. We also note that, from Fig. 7(b) to Fig. 7(d), the nonlinearity coefficient is set at

=0σ , so we only considered the linear propagation and guidance of the probe beam. 
However, if the nonlinearity ( 0σ ≠ ) is introduced, the propagation dynamics of the optical 
beam can be altered in such 3D modulated lattices and interfaces [1–4,8–13,15–17,20]. As an 
example, we consider such nonlinear propagations of the probe beam in Fig. 7(e) ( =0.5σ ) 
and Fig. 7(f) ( =1σ ). Due to self-action of the probe beam itself, we can see that its helix 
amplitude decreases with the increase of the nonlinearity by comparing Fig. 7(b), Fig. 7(e), 
and Fig. 7(f). As expected, the introduction of the self-focusing nonlinearity leads to the 
change of the propagation dynamics of the probe beam through the HL. 
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