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Abstract: We propose a method for generation of tunable three-dimensional (3D) helical
lattices with varying helix pitch. In order to change only the lattice helix pitch, a periodically
varying phase along the propagation direction is added to the central beam — one of the
interference beams for lattice construction. The phase periodicity determines the helix pitch,
which can be reconfigured at ease. Furthermore, a helical lattice structure with an interface
(domain wall) is also achieved by changing the phase structure of the lateral beams, leading to
opposite rotating direction (helicity) on different sides of the interface. When a Gaussian
beam is used to probe the bulk lattice, it can evolve into a spiral beam with its helicity varying
in accordance with that of the lattice. Probing along the interface with two dipole-like optical
beams leads to unusual propagation dynamics, depending on the phase and size of the two
beams. This approach could be further explored for studies of nonlinear interface solitons and
topological interface states. In addition, the helical lattices may find applications in dynamical
multi-beam optical tweezers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In optics, periodic or quasiperiodic waveguide arrays are associated with materials that
exhibit a refractive index modulation in one or more spatial dimensions. They can
significantly modify the overall optical properties of the materials as well as strongly affect
the propagation of light [1-25]. Naturally, an optical beam propagates along a straight line,
but synthetic photonic structures can support rotational propagation which incorporates more
interesting dynamics and applications not found in free space or homogenous media [12-24].
For instance, a rotating waveguide array can support localized (bulk or edge) modes existing
even in the linear region, in sharp contrast to localized states in nonrotating arrays that
typically require a defect or a nonlinearity [17]. In an array of evanescently coupled helical
waveguides arranged in a graphene-like honeycomb lattice, one-way edge states that are
topologically protected from back-scattering have been demonstrated [20], driving the active
field of topological photonics [21]. Indeed, the helical honeycomb photonic lattices could be a
useful platform to investigate a number of fundamental phenomena such as nonlinear
topological edge solitons [22,23], anomalous topological phases [24], and photonic
topological valley Hall edge states [25].

To create helical waveguides in experiments, one can directly write them into fused silica
glass using a femtosecond laser [18,25], or use the optical induction in a nonlinear crystal
[16,26]. The latter approach has been shown to provide a highly flexible and convenient way
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to fabricate many different linear and nonlinear optical lattices [3,4]. Generation of helical
beams (HBs) in free space has also be investigated, and the most common method for
creating such HBs has been relied on the use of a forked hologram. When the hologram is
illuminated with a plane wave, the first-order diffracted beams exhibit helical phase structure
[27]. The inverted Gabor holography principle for tailoring arbitrary shaped 3D beams
including HBs has also been studied numerically and experimentally [28]. Another typical
example is the so-called optical solenoid beams, which come from the solutions of the
Helmholtz equation as a particular superposition of m-th order Bessel beams, propagating
without diffraction with their principal intensity maximum spiraling around the optical axis
[29]. Other alternative methods are proposed and developed based on a superposition of
multiple coherent waves by using interferometric schemes [30-36], spatial light modulators
[35,36], pinhole arrangements [30,37], colloidal monolayers of dielectric microparticles [38],
or the Talbot effect [39,40].

In most of these studies which use the multi-beam interference, so far the attention has
been focused on the generation of photonic lattices with different transverse shapes
(triangular, quadratic, hexagonal or the like), or the formation of corresponding helical
lattices (HLs) [26,30-37]. The issue of how to control the helix pitch and the spiral direction,
both important for optical functionalities of HLs [17,20,22,24], have not been fully addressed.
In this work, we discuss the generation of photonic HLs with controllable helix pitch and
helical rotation direction based on fine-tuning the parameters in multi-beam interference. In
particular, we propose a simple method to create an interface between two helical waveguide
arrays with same or opposite helicities, much desired in the study of edge states and
topological phenomena.

2. Theoretical description of multi-beam interference

The multi-beam interference model involves an optical pattern formed by the superposition of
multiple non-coplanar beams. The beam pattern depends on the number of beams and their
associated configuration [33]. Formed by the interference of ¥ monochromatic noncoplanar

plane waves, the time-averaged intensity distribution of the pattern can be expressed as
[23,27-32]

- 13 S - - o
1(r)=5;Ef +Y V, cos((ki —k;)-r+8¢,), i,j=1,2,3--N, (1)

i
where Vj; is the interference coefficient defined by v, =EE, (;, ;,) . The ith plane wave at the
point ;(x, y,z) in a sample plane x-y at a time ¢ may be presented by
E, (r) = E, cos(k; -;+¢i —wrt)e; , where E, is the amplitude, @ is the frequency, ki is the
wavevector, o¢, = ¢,-¢, is the phase difference, and e: denotes the polarization vector.

As shown in Fig. 1, we assume that there are seven beams &, (i=1,2---7) whose

wavelengths are all set at 4 =488nm - the one typically used for photorefractive induction of
photonic lattices [1-4]. The central beam £, is along the optical axis (z axis) while the side

beams £, (i=1,2---6) are arranged symmetrically around k, at an angle € from z axis
forming an umbrella-like structure. If we do not consider the central beam £, , the side beams
will only form the 2D hexagonal lattice as shown in Fig. 2 (b) at z=0. When we include £,

as a different wave vector component in the direction of the optical axis into the interference
with other plane waves, the phase singularities of the vortices are effectively transformed into
the desired helical intensity structure [26,30]. In this case, 3D hexagonal helical lattices can
be established based on the interference of seven beams. In addition, a phase shift may be
introduced by elliptical polarization in one or more of the interfering beams to produce
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compound lattices [30]. Here, we assume thatk;, is circularly polarized while the other six

beams are linearly polarized for simplicity. In general, strontium barium niobate (SBN)
crystal has been used for the fabrication of optical induction lattices, so we have used the
refractive index of the medium as#n =2.3 in our numerical simulation. The required beam
structures or lattice structures are decided by the parameters of the beam, we discuss how to
achieve novel lattice structures by controlling the beam parameters in the following sections.

Fig. 1. Schematic of interference configuration of seven beams for optical induction of HLs in
a nonlinear crystal, where k, (i=1,2---7) denotes seven beams, the red line arrows and the
red circular arrow describe the direction of the polarization vector of these beams, and the
angle @ is the incidence angle of each beam relative to z-direction.

3. Reconfigurable HLs and formation of interfaces

From Young’s theory of interference, we know that the interference of two plane waves can
produce a fringe pattern with a periodicity inversely proportional to the beam incidence angle.
So, the angle & in our multi-beam interference model may also affect the periodicity of the

induced lattices. In fact, the relation can be written asTh:2/1/ (x/gn sin @) for the horizontal
periodicity and TV=/1/ (2nsin*(8/2)) for the vertical periodicity (helical pitch) [30]. Thus both

the horizontal periodicity and the helical pitch both change with 6 at the same time. Since for
most of applications, we just want to control the horizontal or vertical cycles, additional
control over the interference pattern may be added. Aiming towards this point, let us add a
vertical phase P, = zz/ A varying with the propagation direction (along z) to the central beam,
where A is the longitudinal period. Combing Fig. 2 with Fig. 3, when we add an additional
phase term P, with A =54, the pitch changes from 7, = 107um to T, = 54um while the horizontal

periodicity 7, is still kept at 3.9um at =0.027 .
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Fig. 2. (a) 3D HL with vertical periodicity (longitudinal periodicity along the propagation z-
direction) T =107um at §=0.027 . (b) Intensity distributions at different z planes. The
horizontal periodicity is 7, = 3.9um .
Of course, the pitch varies with A while the angle fis a constant. In practice, to realize
this additional phase, we can utilize the transverse-to-longitudinal structuring strategy as

established before such as by use of an axicon [41,42], the Pancharatnam-Berry phase
element [32], or the spatial light modulator [43].

(a) (®)

z=0pm z=19.9um
54//"1 0 . . . . y . P

7z=36.9um

Fig. 3. (a) 3D hexagonal helix lattice with vertical periodicity T = 54um at #=0.027 by adding
an additional phase term P to the central beam at A =54 . (b) Intensity distributions at
different z planes. The horizontal periodicity is kept at 7, = 3.9um .

Moreover, we can also add an additional radial (transverse) phase to the central beam to
observe the variation of the lattice structure. We start by considering a spiral propagating
(blue curve) in free space, as shown in Fig. 4. At any point in time “s”, we can draw a line
(black line) which is at a tangent to the blue curve. The line is

X —Awsin(ws)(p —s)+ Acos(ws)
y|=| Awcos(ws)(p—s)+ Asin(ws) |. (2)
z p
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Fig. 4. The formation principle of spiral beams by introducing additional radial phase

This line intersects with the x-y plane when p =0 . The spiral amplitude 4 and the
frequency @ can be adjusted as needed. Tracing out the path of the x-) intercept as we vary s
with p, we find that the intercept forms an Archimedean spiral (red curve) expressed as Eq.

(3). Converting into cylindrical coordinates, we can get the additional radial (transverse)
phase P. as shown in Eq. (4) for angle ¥ in terms of radius 7. Equation (4) can be used to
generate such spiral beams.

X pAwsin(wp)+ Acos(wp)
vy |=| —pAwcos(wp)+ Asin(wp) |. 3)
z 0

Fig. 5. The phase distributions (top row) and intensity distributions (bottom row) of the HBs at
6=0.017 and m = 2. The left column denotes P = 0. The middle and right columns denote

A=054and 4=0.254atP # 0, respectively.
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x=0

T,=7.8um

Fig. 6. (a) 3D HL with opposite helicities on both sides of an interface at the x = 0 plane at
60=0.017 . (b) Transverse intensity distributions at different z planes. The red line denotes the

plane of interface at x = 0 . Two black curved arrows (in the first two panels) represent the HL
with opposite (anticlockwise and clockwise) helicities.

r2 ~ 7"2
Prz,/F—Htan gD (4)

where y=me (mis the topological charge and ¢ is the azimuth angle). At this point there are
a number of ways of creating a spiral beam. We could even make a Lagurre-Bessel beam [44]
and impose a spiral rather than a ring-like intensity, which is not the subject of this paper.
Here, we only need to add this phase P. to the central beam for changing the lattice structure.
In Fig. 5, we can see that the phase and intensity distributions are different for P. =0 and
P #0, and they both vary with the spiral amplitude. When we use these beams to induce

photonic lattices, we can get different HL structures [12,13,16,26].
Next, we consider to change the phase of the side beams to get an HL which processes
opposite helicities on different sides of an interface set at x =0. For the six side beams, the

phase is mz/3(m=0,1---5) at x> 0. On the contrary, the phase is -mz/3(m=0,1---5) at
x<0. This can be realized by use of spatial light modulators in experiment [23,27]. As
shown in Fig. 6, such a lattice structure is realized so that the left (x<0) helicity is
anticlockwise, but the right (x > 0) one is clockwise. Comparing Fig. 2 with Fig. 6, we can
further verify that the horizontal periodicity and pitch only vary with the angle 8. When
6=0.017 , we obtainT, =430um and T, =7.8um, and when 6=0.02z , we obtain T, =107um

and 7, =39um . In Fig. 6, though the phase of the side beams varies, the horizontal
periodicity and pitch, as defined by Th=2/1/ (\/gnsine) and Tv:/i/ (2nsin*(6/2)) , remain
unchanged.

4, Validity of HLs probed by a Gaussian beam

In order to examine the propagation dynamics of an optical beam in the above lattice
structures, we first assume that a Gaussian beam, u(x, y,0) = 5exp(—,u(x2 +° )/ 1“2) shown

in Fig. 7(a), enters the above HL vertically along z-direction, as in an optically induced lattice
in a photorefractive crystal, where 4 is the beam width factor and I'=54 . Within the

approximation of isotropic photorefractive nonlinearity and slowly varying amplitude, the
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evolution of an extraordinarily-polarized probe beam u is described by the nonlinear
equation with a periodic lattice potential,

ou 1 9w du
+

i— ( £y
oz  2kyn

1
g Oy ki —— =0 (5)
o’ g’ 2 331+IL+O'|u|2

Here, k,=27z/A , n,=2.35 is the refractive index corresponding to e-polarized light in the
crystal, 7,,=280pm/V is the electro-optic coefficient, and we use E,=120V /mm for the
applied electric field. o is the nonlinearity coefficient, and /, denotes a HL structure [3,14—

18,20-26,30-37]. In Fig. 7(b), one can see that the spatial location of maximum intensity of
the probe beam in y =0 plane during propagation through the HL at #=0.017 indeed

exhibits a spiral feature. Comparing Fig. 7(c) with Fig. 7(b), we can find that the pitch
decreases at #=0.0157 . The helix pitch of the probe beam varies accordingly with the helix
pitch of the lattice resulting from the change of angle &. This indicates clearly the spiral
waveguide structure has been established in the nonlinear crystal. Interestingly, when the
same probe beam enters the lattice interface of opposite helicities of Fig. 6, the beam is
divided into two parts which also show opposite helicities, as shown in Fig. 7(d). The pitch of
each part is the same as the pitch of the beam in Fig. 7(b) because the incidental angle of the
probe beam is the same, that is, #=0.017x . Therefore, it is clear that the incident Gaussian
beam follows the spiral path because of the action of the helical waveguides. It is worth
noting that such a spirally guided beam is nearly non-diffracting while propagating along the
interface. We also note that, from Fig. 7(b) to Fig. 7(d), the nonlinearity coefficient is set at
0=0, so we only considered the linear propagation and guidance of the probe beam.
However, if the nonlinearity (o #0) is introduced, the propagation dynamics of the optical
beam can be altered in such 3D modulated lattices and interfaces [1-4,8—13,15-17,20]. As an
example, we consider such nonlinear propagations of the probe beam in Fig. 7(e¢) (¢=0.5)
and Fig. 7(f) (0=1). Due to self-action of the probe beam itself, we can see that its helix
amplitude decreases with the increase of the nonlinearity by comparing Fig. 7(b), Fig. 7(e),
and Fig. 7(f). As expected, the introduction of the self-focusing nonlinearity leads to the
change of the propagation dynamics of the probe beam through the HL.
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Fig. 7. (a) Input transverse intensity pattern of an incident Gaussian beam with £#/=0.1 probing
the HL. (b) and (c) are the “side-view” results of the probe beam propagating linearly along the
y =0 plane through the bulk HLs (similar to Fig. 2) at =0.017 and 6=0.0157 for =0,
respectively. (d) The propagation of the same probe beam through the HL interface described
in Fig. 6 for 0=0 . (e) and (f) are the nonlinear propagation of the same beam through the
bulk HL as for (b) but with 0=0.5 and 0=1 , respectively.

To further examine the spiral feature of optical beams in these HLs, we employ two
identical (in-phase) Gaussian beams probing from two opposite sides of the HL interface or
domain wall set at the x = 0 plane, which can be written as

u(x,y,0) = 5exp(—ﬂ((x-15><10’6)2 +y2)/Fz)+Sexp(—,u((x+15><10'6)2 +y2)/F2).(6)

Figure 8(a) illustrates this beam with #=0.15. When the beam enters the lattice interface of

same helicities at #=0.0157 , one can see that two Gaussian beams first evolve into a
somewhat spiral-like structure as that in Fig. 7(c), and their helicity is uniform as seen from
Fig. 8(b). However, at a propagation distance of z > lmm , two beams gradually merge into a
single beam due to constructive interference. The inset, which illustrates the beam cross
section at the z =4mm plane, shows this point more clearly. However, when the width of
each probe beam decreases (1#=0.2 ), the propagation dynamics (Fig. 8(c) is quite different

from the one shown in Fig. 8(b), as each beam tends to follow its own helical waveguide
while undergoing the interaction between two beams along the lattice interface. Moreover,
when the dipole-like beam in Fig. 8(a) is sent along the HL interface similar to Fig. 6 at
60=0.0157 , we can see that the two beams follow the spiral path initially with opposite
helicities, as shown in Fig. 8(d). When the propagation distance is at z > lmm , the two beams
gradually merge again into a single beam. The difference of helicity between Fig. 8(b) and
Fig. 8(d) illustrates well the effect of the HL waveguide structure on the propagation features
of the probe beams. We point out that, for Fig. 7 and Fig. 8, we have used beam propagation
method [45] to simulate the propagation properties of optical beams. To maintain the required
accuracy, we monitor the propagation by calculating the beam power (without taking into
account the absorption and scattering) and selecting the optimum choice of step sizes. In
addition, the transverse (x and y ) window used for simulations is made much wider than the

beam width to prevent the beam from hitting the window boundary.



Research Article

Optics EXPRESS

y(pm)
z(mm)

N
%

-50 0 50
X(pem)

z(mm)

-50 0 50 -50 0 50
X(pm) X(pm)

Fig. 8. (a) Intensity pattern of an incident dipole-like beam with ¢/=0.15 probing the
interface. The propagation of the dipole-like beam with ©=0.15 (b) and ©=0.2 (c) in
y =0 plane in the HL interface of same helicities. (d) Propagation of the probe beam in (a)

in the HL interface of opposite helicities. All insets denote the transverse cross sections of the
probe beam at the z = 4mm plane. The other parameter 6=0.0157 .

We also point out that, the numerical work presented here has mainly been focused on
generation of tunable 3D helical lattices and interfaces, as probed by sending a single or
dipole-like Gaussian beam. Linear and nonlinear interface states in such helical lattices
certainly merit further theoretical investigations.

5. Conclusions

In conclusion, we have proposed an effective way for generation of complex 3D HLs with
tunable helix pitch and spiral direction, as well as such lattices with an interface/domain wall
formed by different helicities. Simply by changing the incidence angle of one of the
interference beams, the horizontal and vertical periods of the HLs can be varied at ease. To
change the vertical period (helix pitch) only, an additional phase of the central beam varying
along the propagation direction is introduced, and the change of that phase determines the
helix pitch. Moreover, we also contrive a kind of design for HLs with an effective interface
having opposite helicity on different sides by introducing different phase structure on the two
sides. When an optical beam is sent to probe such HLs and interfaces, it experiences the
helicity of the spiraling lattice structures. If the two sides of the effective helical domain wall
have opposite helicities, the incident Gaussian or dipole-like probe beam exhibits different
propagation dynamics in different sides of the interface. These tunable HLs may be
particularly suitable for the studies of fundamental phenomena such as photonic topological
surface states and rotation solitons.
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