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We study the formation of Shockley-like surface states and their transition into Tamm-like surface states in
an optically induced semi-infinite photonic superlattice. While perfect Shockley-like states appear only when
the induced superlattice with alternating strong and weak bonds is terminated properly with an unperturbed
surface, deformed Shockley-like surface states often appear in the so-called inverted band gap when the surface
perturbation is nonzero. Furthermore, transitions between linear Tamm-like, Shockley-like, and nonlinear
Tamm-like surface states are also observed by fine tuning the surface perturbation. Using coupled-mode theory,
we confirm the existence of these linear and nonlinear surface states in a finite array of N identical single-mode
waveguides coupled with alternating strong and weak bonds.
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Localized surface waves are found everywhere in nature,
from electronic Tamm [1] and Shockley [2] surface states to
liquid-helium surface electrons [3], acoustic surface waves
[4], and plasmon-polariton waves tightly bound to metal sur-
faces [5]. In condensed-matter physics, for example, elec-
tronic surface states have served as a paradigm for studying
fundamental issues in two-dimensional electronic systems
involving electron-electron, electron-phonon interactions in
solids and the effect of atomic spin-orbit interaction on the
formation of spin-polarized surface states important in spin-
tronics [6]. Even though Tamm and Shockley surface states
were predicted in early 1930s [1,2], it was not possible for
decades to demonstrate such states in the pure form that
Tamm and Shockley originally investigated in theoretically
[7]. Then, the technological development of superlattice (SL)
fabrication provided an ideal platform to study electronic
surface waves. Indeed, it was in a semiconductor SL that
Tamm states were first observed [8]. Since then, surface phe-
nomena have been studied extensively with SLs driven by
both fundamental interests and practical applications.

An interesting and subtle issue is the difference between
Tamm-like surface states (TSs) and Shockley-like surface
states (SSs). TSs arise from an asymmetrical surface poten-
tial and the formation of such surface states requires exceed-
ing a threshold perturbation of the surface potential. On the
other hand, SSs result from the crossing of atomic orbitals
[2] or the crossover of adjacent bands. Two characteristic
properties of SSs are that, in contrast to TSs, SSs can exist
without a surface perturbation and the degree of localization
of the surface modes depends on the width of the gap be-
tween the energy bands. While this difference stimulated a
great deal of theoretical interest, the demonstration of Shock-
ley versus Tamm electronic states has been a challenge for
experimentalists because of the intrinsic defects in and com-
plicated nature of real surfaces.

In the field of optics, surface electromagnetic wave propa-
gation is a problem of history as venerable as that in
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condensed-matter physics [9]. Despite the earlier theoretical
prediction and experimental observation of linear optical sur-
face waves in periodic layered media [10], most researches
have focused on the study of nonlinear optical surface waves
[11,12]. This is because in most cases, optical surface waves
cannot exist under linear conditions at the surface of dielec-
tric media, whereas under nonlinear conditions their exis-
tence simply requires high power. Recently, nonlinear optical
surface waves in the form of discrete surface solitons have
been successfully demonstrated in a number of experiments
[13-16]. This was done using a small controllable index con-
trast in a semi-infinite waveguide array or optically induced
photonic lattice. Under self-focusing (self-defocusing) non-
linearity, the light itself is used to induce a positive (nega-
tive) surface defect in an otherwise uniform periodic struc-
ture thereby achieving surface bound states as discrete in-
phase (“staggered” out-of-phase) surface solitons [12—17]. A
key feature of the optical surface waves studied so far is that
they exist only above a certain threshold. In the linear case,
surface waves appear only when the contrast of the dielectric
constants between the periodically layered and uniform me-
dium, or the perturbation of the dielectric constant for the
surface layer, reaches a critical value [10]. In the nonlinear
case, all surface waves exist only above a power threshold,
which determines the light-induced index perturbation at the
surface. This suggests that all surface states observed previ-
ously in optics have the same physical origin as Tamm states
in crystals. On the other hand, linear SSs have been predicted
to exist in specially designed defect chains in complex pho-
tonic crystal structures [18], but they have never been ob-
served in optical systems until our recent successful demon-
stration in optically induced photonic SLs [19]. Meanwhile,
surface states that do not belong to the family of Tamm states
or Shockley states have also been demonstrated as a new
type of defect-free surface states in fs-laser-induced curved
waveguide arrays [20].

In this paper, we study both experimentally and theoreti-
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FIG. 1. (Color online) An intuitive explanation of formation of
different surface states in superlattices. The left side of each panel
illustrates the physical arrangement of single-mode waveguide(s)
shown by red vertical stripes. The right side illustrates the corre-
sponding frequency spectrum. (a) Only one waveguide. (b) Two
strongly coupled waveguides. (c) A SL consisting of strongly and
weakly coupled waveguides terminated at a weak bond. The blue
horizontal stripes shown in the right side correspond to the allowed
bands. No surface mode exists in this case. (d) A SL terminated at a
strong bond and the red horizontal line in spectrum corresponds to
the Shockley-like surface mode. (e) A SL terminated at a strong
bond with surface perturbation and the red line in spectrum corre-
sponds to the Tamm-like surface mode.

cally the transition between Tamm-like and Shockley-like
surface states in an optically induced photonic SL by fine
tuning the index perturbation at the interface between the SL
and the homogeneous region inside a nonlinear crystal. The
induced SL is a waveguide array with alternating strong and
weak couplings between waveguides. We show that SSs, ob-
served only when the SL is terminated appropriately, can be
transformed into TSs of different types either by intention-
ally introducing a surface defect (linear scheme) or by in-
creasing the optical power of a probe beam (nonlinear
scheme). Specifically, we demonstrate that a surface probe
beam can evolve from linear TSs to linear SSs and to non-
linear TSs under different surface conditions. In addition,
“imperfect” or “deformed” SSs with characteristic phase dis-
tributions are also observed during these transitions. Our ex-
perimental observations are in good agreement with our the-
oretical analysis using coupled-mode theory.

Before describing the details of the aforementioned
Tamm-Shockley transition, let us start with a simple ques-
tion: Why would different terminations of the SL lead to
different surface phenomena? To answer this question, we
refer to Fig. 1 to first present an intuitive physical picture,
where the left panels illustrate the physical arrangement of
waveguides shown by the red stripes and the right panels
illustrate the corresponding frequency spectrum of the wave-
guide modes. For the sake of simplicity, let us assume that
each waveguide contains a single mode with an eigenvalue «
as shown in Fig. 1(a). We refer to the strong and weak cou-
plings between neighboring waveguides as strong bond (SB)
and weak bond (WB), respectively, as indicated by the cou-
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pling constants B, and B,, (8,> f,,). Coupling between two
waveguides separated by a SB results in splitting the degen-
erate mode « as shown in Fig. 1(b). If a SL consisting of N
unit cells is terminated at a WB [meaning a weak bond is cut
as shown in Fig. 1(c)], the weak coupling between the N
pairs of strongly coupled waveguides splits each of the two
levels into the two allowed bands of width ~f3,,. These nar-
row bands are separated by a large gap (the so-called in-
verted band gap [2] as we shall discuss below) with a width
~28,. No localized modes can appear in the gap in this case.
On the other hand, if a SL is terminated at a SB, one weakly
coupled waveguide exists at the end as shown in Fig. 1(d).
The eigenvalue « of this surface waveguide resides exactly
in the middle of the band gap, leading to a localized surface
mode w,= « as shown in the right panel of Fig. 1(d). With-
out the need of surface perturbation, this surface mode has
similar origins as electron Shockley states [2,19]. When there
is an additional index perturbation An on the surface wave-
guide, its eigenvalue can change to a,=a—Aa. If Aa=g,,
the surface mode can move out of the inverted band gap.
Especially, if Aa= B+ f,, another surface mode appears
with its eigenvalue crossing the allowed band and falling into
the lower noninverted band gap as illustrated in Fig. 1(e).
This surface mode forms only when the surface perturbation
is above a critical value (i.e., A= B+ ,,), thus, it must be
classified as a Tamm-like surface mode. Likewise, the eigen-
value can also change to a,=a+Aa with Aa= B+, and a
similar Tamm-like surface mode appears in the upper band
gap. Therefore, by modifying the surface perturbation, it is
possible to control the transitions between Tamm- and
Shockley-like surface modes at ease.

Our experimental setup for creating the SLs with desired
surface terminations uses the optical induction technique
[21-24]. In our optical induction process, two ordinarily po-
larized partially coherent beams, each passing through an
amplitude mask [23,24], are used to provide two one-
dimensional (1D) periodic intensity patterns with 20 wm
and 40 wm spacings. Superimposition of the two intensity
patterns appropriately leads to a biperiodic intensity pattern.
This intensity pattern is used to induce a SL by the photore-
fractive effect with an interface terminated either at a SB or
a WB [Fig. 2(b)]. The experimental challenge is not only to
create such SL structures, but also to maintain an invariant
interface between the SL and the homogeneous regime
across the crystal with the desired SB or WB termination. To
do that, the Talbot effect is first eliminated by spatial filtering
at the Fourier plane [24] and then the lattice-inducing beams
are launched laterally through the short dimension (5 mm) of
a strontium barium niobate (SBN) crystal while the probe
beam is launched along the orthogonal long dimension (10
mm) of the crystal [see Fig. 2(a)]. Such arrangement ensures
that the lattice pattern and the interface remain nearly un-
changed along the path of the probe beam throughout the
crystal [Fig. 2(b)]. With a weak bias field, the intensity pat-
tern induces a refractive index pattern so that waveguides
with alternating strong and weak couplings are established.
As illustrated in the simplified sketch of the SL [Fig. 2(c)],
the SB corresponds to a shallow gap separating the strongly
coupled waveguides, while the WB corresponds to a deep
gap separating the weakly coupled waveguides. To test the
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FIG. 2. (Color online) (a) Experimental setup for optical induc-
tion of photonic superlattices. (b) Configuration of superlattices ter-
minated at strong (left) and weak (middle) bonds by superimposing
two simple lattices of different periods (top and bottom) appropri-
ately. The right panel is a three-dimensional (3D) rendering of a
superlattice imprinted in a photorefractive crystal by optical induc-
tion. (c) Illustration of a simplified superlattice structure used for
our theoretical analysis.

properties of wave propagation along different interfaces, an
extraordinarily polarized probe beam is sent into the surface
waveguide channel and its intensity pattern and phase struc-
ture are monitored with an imaging lens, a reference plane
wave, and a charge coupled device (CCD) camera. So far,
two different techniques have been used for optical induction
of SLs [19,25].

We focus on beam propagation along the interface of the
SL terminated at a SB because linear localization cannot oc-
cur at the interface of the SL terminated at a WB (as shown
in our previous work [19]). Reconfiguration of the induced
SL interface makes it possible to demonstrate different sur-
face states shown in Fig. 3. In particular, the unique intensity
and phase profile of the output probe beam [Fig. 3(b)] ob-
served at the SB terminating surface waveguide without ad-
ditional perturbation represent the characteristic signature of
the SSs [19]. This linear surface confinement differs from the
TSs previously observed in optics [10] as well as those re-
cently observed with binary and other specially designed
waveguide arrays [26,27]. Moreover, by intentionally intro-
ducing an index perturbation on the surface waveguide, we
can demonstrate the transitions between TSs and SSs. The
perturbation is created using two methods: one is to make the
surface waveguide itself weaker than all the other
waveguides by fine tuning the spatial filtering (linear
scheme) and the other is to employ the nonlinearity of the
probe beam to increase the surface waveguide index in the
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FIG. 3. (Color online) Experimental output results of the transi-
tion from linear Tamm-like to linear Shockley-like and to nonlinear
Tamm-like surface states. The probe beam enters the first wave-
guide (shown with arrow) of the superlattice. (a) Linear Tamm-like
state due to a negative surface defect. (b) Linear Shockley-like state
at the surface without any perturbation. (c) Nonlinear Tamm-like
state due to a self-induced positive surface defect. Top two rows:
transverse intensity patterns of superlattice and output probe beams.
Bottom row: phase measurement by interference between the output
probe beam and a tilted plane wave.

otherwise ideal surface (nonlinear scheme). In both cases,
localization of the probe beam at the surface is achieved,
giving rise to linear and nonlinear TSs. Should the surface
perturbation be minimized or removed, reappearance of the
SS is observed. Typical experimental results of such transi-
tions under different surface conditions are shown in Fig. 3,
where Figs. 3(a) shows a linear TS obtained with a weak-
ened surface waveguide (i.e., An<<0, similar to a negative
defect). Such a Tamm-like surface state has an evanescently
decaying intensity profile and a characteristic “staggered”
phase structure similar to that of surface gap solitons [14,15]
but quite different from that of the Shockley-like surface
state shown in Fig. 3(b). On the other hand, when the SL has
no inherent surface perturbation, a positive surface defect
(An>0) can be induced using nonlinear self-focusing of the
probe beam at high power. This in turn leads to observation
of a nonlinear TS as shown in Fig. 3(c), corresponding to
that illustrated in Fig. 1(e). The in-phase relation in the “tail”
of the surface mode shown in Fig. 3(c) is in sharp contrast to
the results of Figs. 3(a) and 3(b). These experimental results
provide direct evidence of transitions from linear TSs to lin-
ear SSs and to nonlinear TSs, as corroborated by our theo-
retical analysis below.

We now proceed with the theoretical study of wave propa-
gation in a finite array of N identical, single-mode
waveguides with alternating strong and weak couplings cor-
responding to SB and WB illustrated in Fig. 2(c). In terms of
coupled-mode theory [28], the normalized amplitude of the
electric field E,, localized in the nth waveguide can be found
from the following set of nonlinear differential equations:

d
id_El +a B+ BiEy + ?’|E1|2E1 =0
Z

d
IEEZn + aZnEZH + B1E2n—] + BZE2n+1 + ’)/|E2n|2E2n = 0’
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FIG. 4. (Color online) (a) The spectrum of the SL in the linear
case: solid and dashed curves show the spectra of an infinite SL at
B1=0.38, and B;=p,, respectively. Dots show the spectrum of a
finite SL consisting of nine waveguides at 8,=0.38,. (b) Evolution
of the spectrum of the nine-waveguide SL as a function of the
surface perturbation. Solid curves show the modes of the finite SL.
(c) Evolution of the surface modes shown in (b) as a function of the
normalized power. Solid curve shows the Shockley mode. Dashed
and dash-dotted curves show the nonlinear and linear Tamm modes,
respectively. The shaded areas in (b) and (c) illustrate the allowed
bands of the infinite SL, while the shaded area in (a) represents the
inverted band gap.

d
d 2
leE2n+1 + 41 Eapit + BoEny + BiEsuss + YEsu["Epit

=0, (1)

where ¢, is the linear propagation constant of the mode sup-
ported by the nth waveguide and 3, , are the two coupling
constants corresponding to the weak and strong bonds. The
waveguide array is terminated at a WB when 8,=0,, but at a
SB when S, =f,. The other parameters are the nonlinear co-
efficient vy, the longitudinal coordinate of propagation z, and
the waveguide number » that runs from 1 to N/2 for even N
or from 1 to (N—1)/2 for odd N. Accordingly, it is assumed
that £,=0 if n>N.

First, the linear regime (y=0) of this system is examined.
With an array of identical waveguides, a,,=a, the stationary
modes of the waveguide arrays take the form E,(z)
=exp(iuz)E,, where u is the Bloch-wave propagation con-
stant which describes dispersion. For an infinite waveguide
array, the solution to Egs. (1) can be obtained by considering
the SL as two simple sublattices. Thus, the values of E, for
each even and odd waveguides can be written as
a, exp(iknd) and b, exp(iknd), respectively, where d is the
lattice period [see Fig. 2(c)] and k is the Bloch vector in the
direction perpendicular to the waveguides [17]. The disper-
sion relation of the infinite SL is defined as

p1a(k) = a = B+ B3+ 2,3, cos(kd). 2)

We can see that if both bonds are identical (3,=8,= ), the
dispersion relation becomes

i o(k) = a = Bcos(kd/2). (3)

This is the spectrum of a simple lattice with a period of d/2.
Once B, # B,, an inverted band gap of width E,=2|8;-f,|
appears. In Fig. 4(a), we show the spectrum of an infinite SL
with 8;=0.33, by solid curves, while that of the simple lat-
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FIG. 5. (Color online) (a)—(f) Normalized field profiles of the
surface modes from a nine-waveguide SL corresponding to marked
points in Figs. 4(b) and 4(c). Notice the difference in phase struc-
ture and intensity patterns as observed in experiment. Vertical
stripes illustrate the waveguides.

tice (8;=/,) by dashed curves. In the case of a SL with a
finite number of waveguides, the dispersion relation can be
found by numerically solving Egs. (1). As an example, the
dots in Fig. 4(a) show the spectrum of a SL consisting of
nine waveguides with 8,=0.38,. When $;<f3,, the SL is
terminated by a SB [as shown in Fig. 2(c)]. As mentioned
earlier for Fig. 1(d), in this case, there exists a surface mode
in the middle of the inverted band gap. This localized surface
mode appears only when the symmetry of the SB is broken
at the surface and is not related to any perturbation on the
surface waveguide. Accordingly, this must be classified as
the Shockley surface mode [19] as it emerges from the cross-
ing bands of a simple lattice with a period of d/2 and a
Bloch vector ky=1/d [see dashed curves in Fig. 4(a)]. The
phase of the Shockley mode is thus defined as

E} ~ explikond/2) = exp(imn/2). (4)

So the fields in the first and third waveguides must have an
out-of-phase relation [see also Fig. 5(a) above], which has
been identified in our experiment for the unperturbed SL
terminated at the SB [see Fig. 3(b)].

We further analyze the modes of the SL when perturba-
tion on surface waveguide is introduced. In the linear regime,
we still have y=0, but now the linear propagation constant
of the first waveguide changes so that a;=a—Aa, where Aa
may be related to any surface perturbation such as an index
change An as in our experiment or a change in the width of
the surface waveguide. In Fig. 4(b), we show the SL mode
spectrum with nine waveguides as a function of surface per-
turbation A« with 8,=0.33, and the mode profiles at marked
points of Fig. 4(b) are presented in Fig. 5. When Aa=0, the
surface mode corresponds to the SS discussed above [located
at point a in Fig. 4(b) and shown in Fig. 5(a)]. When A«
> B+ B,,, the surface mode shifts from the middle inverted
gap to an ordinary gap [see point d in Figs. 4(b) and 5(d)]
and shown intuitively in Fig. 1(e). (Note that in the case of
the SB-terminated SL, 8,=f3,.) Since this surface mode ap-
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FIG. 6. (Color online) Experimental observation of a (a) linear
“perfect” Shockley-like surface state and [(b) and (c)] two “de-
formed” Shockley-like surface states corresponding to those [(a)—
(c)] in Figs. 4(b) and Fig. 5. Top row: transverse intensity patterns
of the output probe beam. Bottom row: phase measurement by in-
terference between the probe beam and a tilted plane wave.

pears only when the surface perturbation exceeds a critical
value, it must be considered as a Tamm-like surface mode.
The staggered phase structure [14,15,17] of this mode shown
in Fig. 5(d) agrees with our experimental observation shown
in Fig. 3(a).

In addition to the Tamm-like surface mode obtained at a
threshold value of the surface perturbation, there are other
types of linear surface modes at a slightly positive or nega-
tive surface index perturbation [see points b and ¢ in Figs.
4(b), 5(b), and 5(c)]. The formation of such surface modes
requires no threshold perturbation and they can exist even at
an infinitely small perturbation. In fact, such surface modes
still reside in the inverted band gap and have the same origin
as Shockley-like states. We thus name these surface states as
deformed Shockley-like states. Notice that their phase struc-
tures are different from those of perfect SSs or TSs. Two
examples are shown in Fig. 5: an in-phase relationship be-
tween the first two waveguides and an out-of-phase relation-
ship between the second and third waveguides as shown in
Fig. 5(b); an out-of-phase relationship between the first two
waveguides and an in-phase relationship between the second
and third waveguides as shown in Fig. 5(c). All these subtle
phase characteristics have been clearly observed in our ex-
periments (Fig. 6), when a small negative or positive surface
defect was introduced. In fact, perfect SSs from an ideal
unperturbed surface [as shown in Figs. 3(b) and 6(a)] are
difficult to achieve in our experiments and what we often
observe are the deformed SSs shown in Figs. 6(b) and 6(c).

The nonlinear case (y# 0) not only provides a better ex-
planation for experimental observation in Fig. 3(c), but also
provides a clear picture for the transition between SSs and
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TSs. The solution of the nonlinear system for N waveguides
can be found numerically for any given value of u. In Fig.
4(c), we show the evolution of Shockley-like (solid curve)
and Tamm-like (dashed and dash-dotted curves) surface
modes with increasing power P=3,|E,|>. We can see that the
SSs can exist even in the nonlinear regime, representing the
nonlinear Shockley-like states. These Shockley states merge
into the allowed band at P=1.2 [see point f in Fig. 4(c)] and
then they turn into unstable modes due to radiation to the
continuum spectrum. As the power further increases, the
nonlinear Tamm-like modes appear from the upper band gap
[see dashed curve in Fig. 4(c)]. These are the in-phase sur-
face solitons that have been previously demonstrated with
self-focusing nonlinearity at a threshold power [13,15,16].
The dash-dotted curve in Fig. 4(c) represents the nonlinear
Tamm-like surface modes with “staggered” phase structures,
as observed in experiment with self-defocusing nonlinearity
[14,15]. As shown in Fig. 4(b), these modes also appear in
the linear regime when Aa> ;. In the nonlinear case, these
modes move up and also merge into the allowed band and
become unstable as the power increases. The field profiles
for the points e (nonlinear Tamm states) and f (nonlinear
deformed Shockley states) are plotted in Figs. 5(e) and 5(f),
respectively. The experimental demonstration of linear SSs
to nonlinear TSs by increasing the beam power is shown in
Figs. 3(b) and 3(c). Clearly, our theoretical results are in
good agreement with our experimental observations. Finally,
we would also like to mention that the field profiles of the
linear surface modes in Figs. 5(a)-5(d) as well as the evolu-
tion of the spectrum shown in Fig. 4(b) are in good agree-
ment with the results obtained recently with the transfer-
matrix approach [19]. The consistency of the results from the
coupled-mode theory and the transfer-matrix approach sub-
stantiates our theoretical analysis.

In conclusion, we have successfully demonstrated linear
optical Shockley-like surface states and transitions between
Shockley-like and Tamm-like surface states in light-induced
photonic superlattices. We found that the Shockley-like
states exist only when the superlattices are terminated at a
strong bond. In addition, to reveal the characteristics of lin-
ear Shockley-like states, we have also demonstrated linear
and nonlinear deformed Shockley-like states and transitions
between linear and nonlinear surface states. Our results will
certainly prove to be relevant to linear and nonlinear surface
phenomena in other systems beyond optics.

This work was supported by NSF, USAFOSR, and the
973 Program.
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