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We generate optical beams analogous to the Wannier–Stark states in semiconductor superlattices and observe that
the two main lobes of the WS beams self-bend (accelerate) along two opposite trajectories in a uniform one-
dimensional photonic lattice. Such self-accelerating features exist only in the presence of the lattice and are
not observed in a homogenous medium. Under the action of nonlinearity, however, the beam structure and
acceleration cannot be preserved. Our experimental observations are in qualitative agreement with theoretical
predictions. © 2014 Optical Society of America
OCIS codes: (350.5500) Propagation; (230.6120) Spatial light modulators; (050.1970) Diffractive optics.
http://dx.doi.org/10.1364/OL.39.001065

Wannier–Stark (WS) ladders and associated electric-
field-induced localization predicted and observed in
biased semiconductor superlattices have intrigued scien-
tists for decades [1–3]. The concept was subsequently
introduced into ultracold atoms with an accelerating
optical potential [4] as well as optical periodic structures
such as chirped gratings [5] and waveguide arrays super-
imposed with a linear optical potential [6]. In the latter
case of a discrete optical system, stationary eigenfunc-
tions in the form of WS ladders were found.
In recent years, there has been a surge of research

interest in the study of Airy beams [7–9], including non-
paraxial and nonlinear self-accelerating optical beams
[10–16], but much of the work has been carried on in free
space or uniform media rather than optical periodic
structures. Thus it is natural to ask: can an Airy-like
optical beam also self-accelerate in a photonic lattice?
Recently, this issue was theoretically investigated, and
it was found that WS beams (optical wave packets analo-
gous to WS states in biased semiconductor superlattices)
can freely accelerate in uniform waveguide arrays while
maintaining their overall intensity profiles during propa-
gation [17]. In particular, the two main lobes of the WS
beams self-bend along two opposite hyperbolic trajecto-
ries, while there is an asymptotic connection between the
WS beams and the Airy beams. Interestingly, such WS
beams exist in spite of the fact that the lattice is optically
“unbiased,” e.g., no linear index inclination (linear poten-
tial) is used. This work further stimulated the interest of
research in curved beam optics in photonic lattices and
photonic crystals [18–21].
In this Letter, we report the first experimental demon-

stration of self-accelerating WS beams [18]. We show that
a WS beam can indeed maintain its shape while its two
outer lobes accelerate across a uniform optically induced
1D photonic lattice. However, in the absence of the lat-
tice, the WS beam experiences strong deterioration and

can no longer accelerate in the transverse direction. In
addition, we find that the symmetric light intensity distri-
bution of a WS beam in uniform lattice will be destroyed
under the action of a self-focusing nonlinearity. Our
experimental results are in qualitative agreement with
theoretical predictions.

In our studies, we first use the discrete model devel-
oped in [17] to understand the propagation dynamics
of WS beams in optical lattices. Typical numerical simu-
lation results are shown in Fig. 1, where a WS beam is
generated by launching a plane wave onto the com-
puter-generated hologram [Fig. 1(a)] coded onto a spatial
light modulator (SLM). The hologram is created by inter-
ference between a WS beam as obtained in [17] and a
tilted plane wave so that the WS beam can be readily
retrieved from the first order of the diffraction patterns
[22]. When such aWS beam propagates in free space or in
a homogeneous medium, it experiences strong linear dif-
fraction and deteriorates as it propagates. However,
when it is launched into the 1D waveguide array, the

Fig. 1. Numerical simulations of a WS beam in the context of
coupled mode theory. (a) Computer-generated hologram on the
SLM. (b) Linear propagation of a WS beam through a 1D pho-
tonic lattice. (c) The corresponding phase patterns of (b). Site,
nmarks the waveguide number. (White arrow marks the center
of the beam.)
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beam maintains its symmetric intensity profile and accel-
erates in the transverse direction while propagating
along the longitudinal z direction [Fig. 1(b)]. Notice that
the overall beamwidth at the output of the lattice is much
larger than that at the input. This is due to the self-
bending dynamics of the two main lobes of the WS beam
along opposite trajectories [14]. On the other hand, the
phase of the WS beam propagating in the 1D array oscil-
lates periodically in the transverse direction during
propagation along z [Fig. 1(c)], which obeys an antisym-
metric function θ � n tan−1�αz� as expected from the
theory (θ is the phase angle, n is the site number, and
α is a constant [17]).
In order to generate and observe the WS beam illus-

trated in Fig. 1, we perform an experiment with the setup
sketched in Fig. 2. A beam from an Argon ion laser
(488 nm) is divided into two paths by a polarizing beam
splitter. One path (going through the amplitude mask and
marked in pink) is for the formation of the 1D photonic
lattices in a biased photorefractive crystal using the well-
established optical induction method [23]. The other path
(going onto the phase only SLM and marked in red) is for
retrieving the WS beam from the hologram. The width
and the position of the WS beam are carefully adjusted
by lenses to match the lattice at the input. The spacing
of the lattice is 20 μm, which is about the width of the
central lobe of the WS beam at the input. The input
and output images are taken by a CCD camera, and their
phase profiles are monitored by interfering the WS beam
with a tilted broad reference beam (quasi-plane-wave)
following the blue path.
Figure 3 depicts the linear experimental results in the

1D optically induced lattice, which is meant to corre-
spond to the theoretical results of Fig. 1. Clearly, there
are several major humps (covering 21 waveguides after
careful counting) along the transverse direction at the in-
put facet of the crystal, with the intensity maxima located
in the two outer peaks distributed somewhat evenly
about the central stripe [Fig. 3(a)]. For the cases when
the WS beam is launched at normal incidence into
the homogeneous crystal without the induced lattice
[Fig. 3(b)] and into the uniform 1D waveguide lattice
[Fig. 3(c)], the resulting diffraction pattern is dramati-
cally different: without the lattice, its profile is strongly
deformed and becomes highly asymmetric [Fig 1(b)], but
with the lattice, it expands to about 23 waveguides at the

output facet while keeping roughly the same profile with
most of the energy spreading to both sides [Fig. 3(c)]. The
phase structure of the WS beam can be examined from
the interferograms as shown in the bottom panels of
Fig. 3. The stripes in the transverse direction at the input
are almost parallel near central region, indicating that the
beam has nearly equiphase at the input. However, from
the interferograms taken at the output, one can see that
the fringes in the center waveguides interleave each
other (thus being out-of-phase), suggesting the phase
of the beam on the right and left sides might be antisym-
metric about the center stripe. Although the beam has a
subtle phase structure, it is important to note that, after
propagating through the lattice, the overall WS beam at
the output expands slightly when comparing to that at
the input, indicating that the two major outer lobes
undergo self-acceleration along opposite directions
[Fig. 3(c)]. Note that the observed expanding of the
WS beam shown in Fig. 3(c) is not as dramatic as that
in simulation [Fig. 1(b)], since we are limited by our crys-
tal length (only 1 cm). However, for comparison, a broad
Gaussian beam with input size similar to the entire WS
beam [as in Fig. 3(a)] would not exhibit appreciable dif-
fraction at this propagation length as does the WS beam
[as in Fig. 3(c)]. The bias field used for lattice induction in
Fig. 3 is 1.6 kV∕cm, and the results are obtained when the
WS beam has no nonlinear self-action.

At this point, we want to point out that there are ap-
parent differences between the theoretical results (Fig. 1)
and experimental observations (Fig. 3). First, the input
intensity pattern [Fig. 3(a)] is not perfectly symmetric
with respect to the transverse axis, as compared to those
derived from coupled mode theory [Figs. 1(b) and 1(c)].
This asymmetry is more evident in the diffraction pattern
of the WS beam [Figs. 3(b) and 3(c)]. The reason for this
disagreement is that a WS beam is composed of many
higher-order eigenmodes and therefore cannot be de-
scribed accurately by the discrete model as used for

Fig. 2. Schematic of the experimental setup for generation and
observation of the WS beam in optically induced lattices. PBS,
polarizing beam splitter; SF, spatial filter; M, amplitude mask; F,
filter; L, lens; AT, attenuator; SLM, spatial light modulator; SBN,
strotium barium niobate crystal. Lines and arrows in pink, red,
and blue illustrate the beam paths for the lattice-inducting
beam, the WS beam, and the interference reference beam,
respectively.

Fig. 3. Experimental results of a WS beam at input (left
panels), propagating through a homogeneous medium
(middle panels) and through an induced 1D photonic lattice
(right panels). Top row shows the transverse intensity patterns;
bottom row shows the corresponding interferograms for the
phase measurement. (White dotted line serves as a reference
line). Site n marks the waveguide number.
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Fig. 1. For this reason, we also compare our experimental
results with simulations based on the continuum model
of the paraxial equation of diffraction, which is given in
normalized units by iUz � Uxx � V�x�U � γjU j2U � 0,
where z is the propagation distance, x the transverse co-
ordinate, U the electric field amplitude, γ the nonlinear
Kerr coefficient, and V�x� the optical lattice potential
with a period D.
The WS modes are eigenmodes of the form U�x; z� �

ϕ�x� exp�iβz� of the following linear eigenvalue problem
γ � 0: ϕxx � �V�x� − ax�ϕ � βϕ, where a is the linear tilt
of the lattice. We choose the linear tilt in such a way so
the WS eigenmodes of the above problem match approx-
imately with the experimental input condition. Then, for
this input [Fig. 4(a)], we calculate the linear output of
the beam without a lattice [Fig. 4(b)] and with a lattice
[Fig. 4(c)]. Clearly, with the lattice present, the WS beam
experiences slight expanding [Figs. 4(a) and 4(c)] after
careful counting the number of waveguides it covers.
Without the lattice, the overall beam diffraction is indeed
larger as seen in Figs. 3(b) and 4(b), but the initial beam
profile is strongly deformed, and the high intensity region
is somewhat localized. Thus better qualitative agreement
between experimental and numerical results is obtained
with the continuum model. The spatial expansion of the
beam and the overall diffraction behavior are very close
to that from experiment (Fig. 3). We have to point out
that the exact matching between theory and experiment
is difficult if not impossible, mainly because in experi-
ments the input WS beam cannot be perfectly coupled
to every site of the waveguide lattice.
To further investigate the dynamics of the WS beam,

we examine its nonlinear propagation through the
photonic lattice. The self-focusing nonlinearity is easily
applied under a positive bias field [23], and the strength
of the nonlinearity can be fine-tuned by the applied field
and/or the intensity of the WS beam. Figure 5 shows the
output transverse beam patterns (a) and (b) and corre-
sponding Fourier spectra (d) and (e) at two different
levels of nonlinearity (with bias fields 2.0 kV∕cm and
2.8 kV∕cm, which correspond to nonlinear refractive in-
dex changes of about 1.57 × 10−4 and 2.19 × 10−4, respec-
tively). From Figs. 5(a) and 5(b), one can see that the
intensity of the beam shifts more to the left humps
and distributes even more asymmetrically with the in-
creased nonlinearity, indicating that the nonlinearity
deteriorates the WS beam. We note that this is different
from the self-accelerating beams in homogeneous

nonlinear media, where they are not necessarily afflicted
by nonlinearity [10–12]. Moreover, the corresponding
spectra under different nonlinearities are also measured
as shown in Figs. 5(d) and 5(e), suggesting that the
Fourier spectra also distribute unevenly and become
distorted due to the nonlinear effects. The theoretical re-
sults based on the aforementioned nonlinear Schrödinger
equation (with γ � 1) are presented in Figs. 5(c) and 5(f),
where the output intensity Fig. 5(c) and the correspond-
ing spectrum Fig. 5(f) are illustrated. We can see that in
this case most of the light is shifted to the outermost left
lobe, and the strong nonlinearity leads to generation of
many new spatial frequencies. Again, the comparison
here is meant to be only qualitative; as in our model,
the Kerr nonlinearity is employed for simplicity rather
than the saturable anisotropic photorefractive nonlinear-
ity, apart from other factors due to complicated experi-
mental situation. Nevertheless, these results illustrate
clearly that the propagation of the WS beam is strongly
destroyed by the action of nonlinearity. It is worth noting
that due to modulation instability, interesting 2D dynam-
ics are observed in Fig. 5 compared to those of Fig. 3. We
should also point out that, although our observation
suggested that the acceleration of optical beams in non-
linear waveguides leads to beam breakup and instability,
there might be stable nonlinear solutions of accelerating
beams in optical periodic structures under other condi-
tions yet to be found.

In summary, we have studied both experimentally
and theoretically linear and nonlinear propagation of
Wannier–Stark beams in 1D uniform photonic lattices.
Our results indicate that in the absence of a lattice, a
WS beam experiences strong linear diffraction and be-
comes asymmetrically deformed due to its unique phase
and intensity distributions. Yet, in a uniform lattice, a WS

Fig. 4. Theoretical plots of normalized intensity (in a.u.) of a
WS beam at (a) input, (b) output after propagating through a
homogeneous medium, and (c) output through a 1D photonic
lattice.

Fig. 5. Experimental results of nonlinear propagation of the
WS beam. Shown are output transverse beam patterns after
1 cm propagation distance [(a) and (b)] and corresponding
Fourier spectra [(d) and (e)] taken at two different bias fields
of 2.0 kV∕cm [(a) and (d)] and 2.8 kV∕cm [(b) and (e)]. The
white arrows mark the center of the beam. kx and ky in (d)
and (e) are the axes in the momentum space. Theoretical
results of output intensity profile and its Fourier spectrum
are depicted in (c) and (f), respectively, as obtained from
the nonlinear Schrödinger equation (with γ � 1). Site, n marks
the waveguide number.
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beam maintains its intensity profile and its two lobes
“freely” accelerate along two opposite trajectories.
Under the action of nonlinearity, however, the profile
of the WS beam is destroyed even in the uniform lattice.
Our experimental results are in qualitative agreement
with numerical simulations. In addition, we have studied
the propagation of WS beams in “titled” lattices (straight
waveguide arrays but tilted relative to the probe beam
direction). We have also found the true diffractionless
(no expanding) but accelerating beams in z dependent
bending periodic potentials. These results will be re-
ported elsewhere [24]. Our result may bring about new
possibilities for studying curved beam optics and self-
acceleration in photonic structures.
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