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We generate optical beams with rotating intensity blades by employing the moiré technique. We show that the
number of the blades and the speed and direction of rotation can be controlled at ease with a spatial light modulator,
while no mechanical movement or phase-sensitive interference is involved. By applying a noninstantaneous
self-focusing nonlinearity, we demonstrate both theoretically and experimentally self-trapping of such optical
propelling beams. © 2010 Optical Society of America
OCIS codes: 190.4420, 190.6135, 120.4120.

Optical beams with rotating intensity distribution have
attracted much attention owing to both fundamental in-
terest and technological applications [1–10]. Apart from
the fascinating features of rotating beams in wave theory
[1–4], it has been demonstrated that rotating beams can
be used in a variety of studies, such as stirring Bose–
Einstein condensates [5], rotating optical tweezers
[6,7], improving imaging resolutions [8,9], and creating
complex optofluidity [10]. In the nonlinear regime, the
possibility of self-trapping of rotating beams into rotating
solitons has been investigated [11–16]. It has also been
shown that a rotating Bessel lattice can set solitons into
circular motion [17]. Thus far, various techniques have
been proposed to generate rotating beams, including the
use of revolving mirrors [11], rotating apertures [10], op-
tical interference of Laguerre–Gaussian modes or Bessel
beams [4,6], and computer-generated holograms [18] or
binary-phase diffractive elements [19]. In this Letter, we
propose and demonstrate an approach to generate rotat-
ing intensity blades (we shall call them “optical propel-
lers”) by employing moiré techniques. We show that,
by overlapping a moving straight-line grating with a sta-
tionary vortex-type grating, optical propellers with differ-
ent numbers of blades can be generated and their
rotation speed and direction can be controlled with ease.
Self-trapping of such rotating beams is also realized in a
slow-response nonlinear medium. These optical propel-
lers may find applications in optical trapping and manip-
ulation of microparticles and biological samples.
To create rotating beams with the moiré technique, let

us overlap a simple straight-line grating (by interfering
two plane waves) and a fork-bearing grating (by interfer-
ing a plane wave and a vortex beam), as shown numeri-
cally in Fig. 1(a). When both gratings are stationary, the
resultant moiré fringes are also stationary, and they have
different numbers of intensity blades as determined by the
topological chargesm of the vortices for creating the fork
gratings [20,21]. By moving the straight grating along the
grating-vector direction relative to the fork grating, the
moiré patterns start to rotate clockwise or counterclock-
wise, depending on themoving direction and/or the sign of
the topological charges. With appropriate spatial filtering,
the rotating moiré patterns can be successfully retrieved,

as depicted in Figs. 1(b)–1(d), where a broad Gaussian
beam centered at the vortex singularity displaces the
moiré patterns after passing through the overlapped grat-
ings. FromFigs. 1(b) and 1(c), it can be seen that, although
themovingdirectionof the straight grating is the same, the
output patterns rotate along opposite directions due to op-
posite signs of the vortex charges. Likewise, for the same
sign of the vortex charges, the rotating direction is
reversed when the moving direction of the grating is re-
versed, as depicted in Figs. 1(b) and 1(d). We should also

Fig. 1. (Color online) (a) Gratings employed for generation of
optical propellers with the moiré technique. Shown from left to
right are a simple straight-line grating and vortex fork-type grat-
ings with topological chargesm ¼ 1, −2, and 3. (b)–(d) Rotating
moiré patterns created by overlapping a moving straight grating
with stationary fork gratings for m ¼ 1, −2, and 3, respectively.
The left panels show a snapshot of overlapped gratings, and the
right three panels show corresponding first-order diffraction of
an otherwise uniform Gaussian beam from the gratings. Dashed
and solid arrows indicate moving and rotating directions of the
grating and moiré patterns, and white dots mark one of the
blades of the optical propellers (Media 1, 810 KB).
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mention that the rotation speed of the optical propellers is
proportional to the moving speed of the grating.
Let us now look at the possibility of nonlinear self-

trapping of the above optical propellers in a slow-
response medium. If the rotation of the moiré patterns
is fast enough, the nonlinear material can respond only
to the time-averaged intensity of the optical field, as in
the case of incoherent solitons [22]. Therefore, although
each instantaneous intensity pattern is not symmetric, a
circularly symmetric waveguide can be induced by the
time-averaged intensity pattern of the rotating beam in
a noninstantaneous nonlinear medium. To describe the
propagation of an optical propelling beam under non-
instantaneous photorefractive nonlinearity, we use the
following dimensionless theoretical model, akin to the so-
called coherent density approach developed earlier [23]:
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where ∇2 ¼ ∂2=∂x2 þ ∂2=∂y2, E0 is the applied electrical
field, and f ðx; y; z; θÞ and I are the amplitude of the tran-
sient light field and the time-averaged intensity of the ro-
tating beam, respectively. Note that the total intensity of
the optical beam is the integral of the light field at different
orientations, as denoted by the rotating angle θ.
Figure 2 shows an example of our numerical results
for nonlinear self-trapping of a single-blade rotating
pattern created with a singly charged vortex (m ¼ 1).

Without the nonlinearity, the single-blade beam under-
goes linear diffraction while rotating counterclockwise
[Figs. 2(a)–2(c)], but the time-averaged pattern is circu-
larly symmetric as shown in Fig. 2(b). With the self-
focusing nonlinearity, however, the rotating beam is
self-trapped, as demonstrated in Figs. 2(d)–2(f). Again,
the time-averaged intensity displays a circularly sym-
metric pattern [Fig. 2(e)]. From our numerical simulation,
we find that self-trapping of multiblade rotating beams
[Figs. 1(c) and 1(d)] is also possible with the noninstanta-
neous nonlinearity. This suggests that soliton solutions for
these propelling beams might be available based on the
theoretical model of Eqs. (1), which certainly merits
further investigation.

Our experimental setup for generation and self-
trapping of the aforementioned optical propelling beams
is shown in Fig. 3(a). The overlapping gratings, as de-
scribed in Figs. 1(b)–1(d), are created with a reflec-
tion-type spatial light modulator (SLM), and then a
broad Gaussian beam (at 532 nm) reflected from the
gratings is sent through a Fourier filtering system to re-
trieve the moiré patterns. To make the intensity blades
rotate, the simple grating is set into linear motion, again
controlled by the SLM. To demonstrate nonlinear self-
trapping of the rotating beams, a biased 1-cm-long
photorefractive strontium barium niobate (SBN:60) crys-
tal is employed as a noninstantaneous nonlinear medium.
(The typical response time of the crystal is about a few
minutes at the intensity level we used, while the moiré
pattern is rotating at a frequency of about 4 Hz.) The
input and output intensity patterns are monitored with

Fig. 2. (Color online) Numerical results of self-trapping of a
single-blade optical propeller generated in Fig. 1(b). (a)–(c)
show three snapshots of output transverse patterns, the corre-
sponding time-averaged intensity pattern, and a side-view of the
beam at linear propagation; (d)–(f) same as in (a)–(c), except
that the beam is at nonlinear propagation (Media 2, 624 KB).

Fig. 3. (Color online) (a) Experimental setup. SLM, spatial
light modulator; BS, beam splitter; F, spatial filter; WLS,
white-light source. (b) Single-blade propeller generated in ex-
periment corresponding to Fig. 1(b). Four panels are snapshots
of three instantaneous patterns plus the time-averaged intensity
pattern at input; (c) and (d) depict output patterns after (c) lin-
ear diffraction and (d) nonlinear self-trapping through the crys-
tal, corresponding to Fig. 2 (Media 3, 48.1 KB).
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a CCD camera. Typical experimental results correspond-
ing to Figs. 1(b) and 2 for generation and self-trapping of
a single-blade propeller are displayed in Figs. 3(b)–3(d).
As expected, the rotating beam gets dimmer and broader
after linear propagation thanks to diffraction, while main-
taining its rotating features [Figs. 3(b) and 3(c)]. When a
positive voltage (about 2 kV=cm) is applied, the output
beam is self-trapped [Fig. 3(d)] owing to self-focusing
nonlinearity. For both the linear and the nonlinear cases,
the instantaneous snapshots taken at different time
delays show clearly the rotating blade of the beam, while
the time-averaged intensity exhibits a doughnutlike pat-
tern. Experimentally, we also generated optical pro-
pellers with two and three blades corresponding to
Figs. 1(c) and 1(d), which are shown in Figs. 4(a) and
4(b), respectively. Clearly, our experimental results
agree well with those from our numerical simulations.
Note that, in our experiment, the “beam interference”
and “grating motion” are all done by the computer-
controlled SLM, therefore, no phase-sensitive interfer-
ence or mechanical movement is required. Because no
coherent interference is involved in the process, we ex-
pect that these optical propellers could also be created
with partially incoherent or while-light beams. We point
out that our generation of these propelling beams repre-
sents a transition from linear translation to rotation and
from vortex phase singularity to azimuthal intensity var-
iation without any mechanic rotating device.
In summary, we have demonstrated the generation and

self-trapping of optical propelling beams by employing
the moiré technique. Research into finding exact soliton
solutions for the optical propellers, as well as manipulat-
ing microparticles with these optical propellers, is cur-
rently under way. Our results bring about a novel
approach for the creation of controllable rotating beams,

which may find applications in optical and biological
micromachines.
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Fig. 4. (Color online) Experimental generation of optical pro-
pellers with (a) two and (b) three blades corresponding to the
numerical results shown in Figs. 1(c) and 1(d). Four snapshots
are taken from a movie shown online (Media 4, 212 KB).
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