
Optical generation and control of spatial
Riemann waves
DOMENICO BONGIOVANNI,1,2 BENJAMIN WETZEL,1,3 PENGZHEN YANG,2 YI HU,2,9 YUJIE QIU,2

JINGJUN XU,2 STEFAN WABNITZ,4,5 ZHIGANG CHEN,2,6,10 AND ROBERTO MORANDOTTI1,7,8,11

1INRS-EMT, 1650 Blvd. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
2TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
3XLIM Research Institute, CNRS UMR 7252, Université de Limoges, 87060 Limoges, France
4DIET, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
5Novosibirsk State University, 1 Pirogova Street, 630090 Novosibirsk, Russia
6Department of Physics & Astronomy, San Francisco State University, San Francisco, California 94132, USA
7Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
8ITMO University, St. Petersburg 197101, Russia
9e-mail: yihu@nankai.edu.cn
10e-mail: zgchen@nankai.edu.cn
11e-mail: morandotti@emt.inrs.ca

Received 29 March 2019; revised 4 June 2019; accepted 12 June 2019; posted 17 June 2019 (Doc. ID 363703); published 11 July 2019

We extend the concept of Riemann waves (RWs) to the
spatial domain and demonstrate for the first time, to the
best of our knowledge, Riemann beams with a propagation
scenario allowing controllable shock formation in a nonlin-
ear optical system. Similar to their standard counterparts,
“shifted” RWs are characterized by a local propagation
speed proportional to their local amplitude. Their steepen-
ing dynamics can be judiciously controlled by means of
an additional phase term. In particular, RWs are generated
by properly tailoring the initial phase of an optical beam
propagating through a thermal solution of an m-cresol/
nylon mixture that exhibits a giant self-defocusing non-
linearity. The experimental results show a controllable
steepening and shock wave behavior, in good agreement
with the prediction from the simple inviscid Burgers
equation. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.003542

For over a decade, nonlinear optics has provided a convenient
and controllable environment to investigate nontrivial wave
phenomena and establish intriguing links with those encoun-
tered in hydrodynamics [1]. The analogy arises from the central
role of the nonlinear Schrödinger equation (NLSE) that may
describe both optical and hydrodynamic nonlinear systems.
Stimulated by the seminal observation of “optical rogue waves,”
[2] research in this field has led to several studies in optics, with
the aim of studying the origin and the control of extreme event
formation [3–6]. In this framework, the self-focusing regime of
the NLSE and its similarity with deep-water wave hydrody-
namics [7,8] have received significant attention, in particular
within optical studies focusing on the process of modulation
instability [1,9–11] and the associated formation of peculiar

nonlinear solutions (such as optical breathers and solitons)
[1]. Remarkably, the self-defocusing regime of the NLSE
can also exhibit ubiquitous phenomena found in a broad range
of physical systems, well beyond nonlinear optics. For instance,
besides the well-known optical dark solitons [12], the self-
defocusing NLSE, upon particular assumptions, can efficiently
mimic the dynamics of shallow water hydrodynamics [13,14].
In particular, whenever nonlinearity is predominant over a lin-
ear beam or pulse broadening [15–17], the NLSE can be
approximated into the nonlinear shallow water equation
(NSWE), the study of which has been the focus of several re-
cent works. Noteworthy, this NSWE analogy in nonlinear op-
tics has been at the basis of studies spanning the formation of
optical undular bores [18], optical tsunamis [19], hydrody-
namic optical soliton tunneling [20], and the experimental
study of photonic dam breaks [21]. The underlying interest
in the NSWE approximation comes from the availability of
several analytic solutions that can be readily calculated [15].
For instance, nonlinear invariant solutions of the NSWE, also
known as Riemann waves (RWs) [19,22], are of particular sig-
nificance for their intrinsic relation with shock wave phenom-
ena [23–29]. Perhaps the most exemplary among recent works
are the observation of random RW signatures in integrable tur-
bulences [30] and the controlled excitation of “simple” RWs
[31] in nonlinear optical fibers. The temporal evolution of the
RW is known to obey the inviscid Burgers equation (IBE) [15]
—a ubiquitous and simple model used to study shock wave
formation in different areas of physics [32–34], from traffic
flow [35] to optical tsunamis [19].

In this Letter, we experimentally study simple RWs in
the spatial domain, extending the spatial analogy to shifted
Riemann beams (RBs). Guided by our theoretical analysis, we
demonstrate experimentally the formation of optical RBs by
judiciously shaping a laser beam before entering into a synthetic
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colloidal suspension. Specifically, we show that the transverse
position of the shock point can be tailored by means of a linear
phase shift. We observed such shifted RBs in m-cresol/nylon
thermal solutions, which provide the sufficient self-defocusing
nonlinearity [36] required to approximate the spatial beam evo-
lution by the NSWE.

To theoretically describe our approach, we start by approxi-
mating the response of our thermal solution with an instanta-
neous Kerr nonlinearity (see, e.g., [36]), where the beam
evolution is described by the following one-dimensional (1D)
NLSE:
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In Eq. (1), E�x, z� is the electric field envelope, γ � kn2∕n0 is
the nonlinear coefficient, and k � k0n0 is the wavenumber, in
which n0 is the refractive index, k0 is the vacuum wave vector,
and n2 is the second-order nonlinear refractive index. In a
dimensionless coordinate system, Eq. (1) can be rewritten as
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where s � x∕x0 and ξ � z∕�γI 0� correspond to the dimension-
less transverse and longitudinal coordinates, scaled with respect
to the beam waist x0 and the peak intensity I0; ψ�s, ξ� �
E�s, ξ�∕I 1∕20 is the normalized electric field envelope, while
LNL � 1∕�jn2jI 0� and LDiff � 1∕�k0n0x20� refer to the nonlin-
ear and diffraction lengths, respectively. The solutions to Eq. (2)
are found by applying the Madelung-like transformation [16]
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where ρ�s, ξ� and u�s, ξ� are real functions, and α corresponds to
a linear phase-shift parameter. If we consider a strongly
self-defocusing nonlinear regime (so that n2 < 0, and
LDiff ≫ LNL), Eq. (2) can be approximately described by the
following NSWE:
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with β � �LNL∕LDiff �1∕2 and ς � βξ. Within this regime, we
can further assume that the input excitation has the form of a
simple RW [22] (denoted with ψR�s, ξ�), a solution that com-
plies with the relationship u�s, ξ� � 2�ρ�s, ξ��1∕2. In this par-
ticular case, the instantaneous spatial frequency profile of the
beam is a scaled replica of its amplitude. More importantly, dur-
ing nonlinear propagation, the beam tends to preserve this pro-
portionality between spatial chirp and amplitude; thus, the
beam dynamics, formally governed by the NLSE, can now
be efficiently approximated by the IBE:

∂jψRj
∂ξ

� �3βjψRj � αβ2� ∂jψRj
∂s

� 0: (5)

The above equation can be analytically solved through the
method of characteristics, which indicates the direction of
the energy flow in the RW. In its implicit form, the solution
can be expressed as

jψR�s, ξ�j � jψR�s − αβ2ξ	 3ξβjψR�s, ξ�j�j, (6)

while the characteristic lines are described by the parametric rep-
resentation

s�s0, ξ� � s0 � αβ2ξ� 3ξβjψR�s0, 0�j, (7)

where s0 denotes an arbitrary point in the s-axis at the onset of
propagation (i.e., ξ � 0). Depending on the sign in Eq. (3),
which also governs the signs in Eqs. (4)–(7), the IBE solution
is associated with a progressive steepening of either its left or
right edge, along with the eventual development of a gradient
catastrophe associated with the formation of a shock. At the
shock point (sSC , ξSC ), the characteristic lines start to cross in
the s-ξ plane, so that the wave amplitude derivative tends to
go to infinity. In fact, this point can be readily calculated
as sSC�s0SC�αβ2ξSC�3ξSCβjψR�s0SC ,0�j and ξSC��−3β∂jψR
�s0SC ,0�j∕∂s�−1, with s0SC being the value corresponding
to min��−∂jψR�s, 0�j∕∂s�−1�.

According to the above theory, we expect that the inclusion
of a linear phase-shift α will allow for the direct control of the
RW transverse shock position sSC , while the distance ξSC at
which this shock develops is expected to remain unchanged.
(Note that the case where α � 0 here corresponds to the
standard, simple RW reported in the literature [19,22,31].)
Numerically, we study the evolution of this solution within
the framework of the (1D) spatial NLSE. In particular, we
consider the case of shifted RBs described by Eq. (3), where
the input beam presents a Gaussian shape. Figure 1 reports
numerical simulations for the case of a Gaussian RB propagat-
ing in a 2 cm long nonlinear medium, with parameters β �
0.035 and γ � −3.86 × 10−5 mW−1 (so that the NLSE can
be effectively approximated by the NSWE). The simulations
are carried out via the split-step Fourier transform method
applied to Eq. (1).

At the input, we consider a RB with an amplitude
profile E�x, 0� � I 1∕20 exp�x2∕2x20�, with x0 � 169 μm and
I 0 � 81.9 kW∕m2. We assume the sign of the spatial chirp
in Eq. (3) to be positive, and consider two different values
of the shifting parameter α � −6 × 105 and 0. For the first
negative value of α, the Gaussian RB conserves a constant
peak intensity while moving backward along the x-axis, as
illustrated in Figs. 1(a) and 1(b). Simultaneously, the beam
undergoes a progressive steepening of its right edge until reach-
ing a near-infinity slope at the shock point, the position of
which is given by zSC � e1∕2∕�3βγI0� � 10 mm and xSC �
2x0 � e1∕2x20αβ∕3 � 6.1 μm. In this case, with the inclusion
of an additional phase shift leading to a tilt of the beam front,
the low-intensity parts of the beam travel faster towards the left
than the high-intensity ones. Conversely, for the case illustrated
in Figs. 1(c) and 1(d) where α � 0 (as well as for other positive
values of α ), the RB shifts forward along the x-axis, while
experiencing a similar steepening behavior until the formation
of the gradient catastrophe (shock) is reached at zSC � 10 mm
and xSC � 0.34 mm. Without the beam front tilt induced by
the additional phase term α, RB propagation is similar to the
case of a standard RW, theoretically studied in Refs. [19,22],
where the high-intensity parts of the beam travel faster towards
the right than the low-intensity ones. The qualitatively different
behavior observed in the NLSE simulations, including the
beam front tilt, is indeed confirmed by the analysis of the
characteristic lines obtained from Eq. (7) and depicted with
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white lines in Figs. 1(a) and 1(c): until the shock distance zSC (after
which the IBE solution is no longer valid), the numerical evolution
of the NLSE is in very good agreement with the IBE analytical
predictions, as also attested by the perfect overlap between the
selected intensity profiles illustrated in Figs. 1(b) and 1(d).

Shifted RWs represent a more general class of simple invari-
ant solutions of the NSWE system, which we aim at observing
experimentally using the setup of Fig. 2(a). In contrast with
Ref. [31], where temporal RWs (i.e., pulses) were generated
by shaping both amplitude and phase in the Fourier domain,
spatial RWs (i.e., RBs) are synthesized by solely modulating the
input beam phase in the real space. The phase of an incident
Gaussian beam (continuous wave, λ � 532 nm, 1.4 mm waist)
is shaped via a commercial phase-only spatial light modulator
(SLM) produced by Holoeye (Pluto −1920 × 1080 pixels). A
cylindrical telescope system (f � 300 mm and f � 50 mm)
is employed to reshape the phase-modulated circular Gaussian
beam into an elliptical one (FWHM � 283 μm along the
minor axis and 2.31 mm along the major axis; 58 mW).
The cylinder telescope here possesses a dual-functionality:
First, it allows to approximate the experimental conditions
of the 1D NLSE (by making the beam quasi-invariant along
the y-axis); secondly, it enables to properly scale the applied

phase mask (and beam intensity) in order to generate the de-
sired input conditions, while fully exploiting the spatial reso-
lution and power limitations of the SLM. After its initial
shaping, the RB is injected into a 1 cm long cuvette filled with
a nonlinear thermal solution composed of an m-cresol and ny-
lon mixture. For 3.5% mass concentration of nylon, the non-
linear Kerr coefficient associated with the solution is estimated
to be n2 � −1.6 × 10−5 cm2∕W [36]. The strong nonlinearity
of this solution, along with the beam parameters, allows us to
reach NSWE validity for the NLSE system (β ≈ 0.035). The
beam characterization is carried out by recording the transverse
intensity distributions at the front and back facets of the cuvette
using a spherical lens (f � 100 mm) and a CCD camera
(Coherent LaserCam-HR II).

First, we measured the intensity pattern of the initial laser
beam at the input facet. This “noisy” 2D beam intensity pattern
shown in Fig. 2(b) was then averaged along the y-axis, in order
to retrieve a 1D beam intensity profile [see Fig. 2(c)], which
was used to compute the appropriate RB phase mask. As
mentioned above, simple RBs exhibit a spatial chirp that is
a properly scaled replica of their amplitude. In this case, the
experimental intensity profile (solid red line) was well fitted
by a Gaussian profile (dashed green line), similarly to the sim-
ulations reported in Fig. 1. To imprint the appropriate spatial
chirp, the phase information for SLM encoding was numeri-
cally calculated using Eq. (3), and considering the fitted inten-
sity profile shown in Fig. 2(c): With a linear phase shift
α � −6 × 105, the overall horizontal phase mask shown in
Fig. 2(d) leads to the formation of a RB with a highly
modulated input spectrum [Fig. 2(e)], where the experimental

Fig. 2. (a) Experimental setup. (b) Transverse intensity distribution
of the RB measured at the input facet of the cuvette. (c) Mean intensity
profile (solid red line) corresponding to (b) and its Gaussian fit (dashed
green line). (d) Input spatial phase and (e) spectral intensity profiles are
calculated using either the ideal Gaussian fit (dashed green line) or the
real experimental conditions (solid red line) shown in (c).

Fig. 1. Numerical demonstration of RB propagation obtained for
two different values of the linear shift parameter, exhibiting the shock
formation at the same distance z � 10 mm. The parameters in
the NLSE simulations are β � 0.035 and γ � −3.86 × 10−5 mW−1.
(a), (b) α�−6×105 and (c), (d) α � 0. The simulated beam intensity
evolutions (a), (c) are compared with the characteristic lines obtained
analytically from the IBE predictions (white lines). The corresponding
intensity profiles (b), (d) at selected distances compare the NLSE
simulations (dashed green) with the IBE evolutions (solid blue).
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profile (solid red line) is in good agreement with the numeri-
cally calculated one (dashed green line). Experimentally, we
characterized the input intensity pattern at a low power level
(∼1 mW), for which it was confirmed that any nonlinear beam
reshaping was absent after propagation. However, at a target
power level (58 mW), the laser beam experienced a strong non-
linear self-defocusing effect, thus activating the controlled
steepening of the RB. We mention that the linear loss (mea-
sured to be 0.2 cm−1) in our defocusing media is not negligible,
but plays a minor role during the evolution of the RB.

Figure 3 compares the numerical and experimental results of a
spatial RW dynamics signature. The input beam [Figs. 3(a) and
3(c)] experiences progressive steepening, until a vertical edge is
formed at the output [Figs. 3(b) and 3(d)], after 1 cm of propa-
gation in the solution. The experimental intensity patterns
shown in Figs. 3(a) and 3(b) are in good quantitative agreement
with numerically simulated dynamics: the averaged intensity
profiles displayed in Figs. 3(c) and 3(d) highlight how the exper-
imentally observed RB steepening process (red lines) leads to the
formation of a shock at the foreseen propagation distance
zSC � 1 cm, in good agreement with IBE predictions (green
lines). It is noteworthy that the shifted RB is here efficiently en-
gineered, so that the shock formation occurs at the beam center
(i.e., the steepened edge is located at xSC � 0) without the ap-
pearance of the post-shock oscillations typically observed on a
non-zero intensity background [22,27,29,31]. Conversely, some
oscillations are observed on the RB left edge, mainly due to
imperfect spectral filtering of the high-order diffractive terms in-
troduced by the SLM, as well as to the scattering effects induced
by the nylon particles dissolved in the m-cresol solvent.

In conclusion, we have introduced a new, and more general
class of spatial optical RW solutions. Taking advantage of the
giant self-defocusing nonlinearity offered by synthetic m-cre-
sol/nylon thermal solutions, shifted RBs are observed experi-
mentally via spatial shaping, providing a good qualitative
agreement with the IBE theoretical predictions of shock forma-
tion. The ability to generate these ubiquitous wave dynamics in
the spatial domain (where the evolution is not limited to one
dimension [27–32]) offers new perspectives to exploit advanced
and controllable high-dimensional RW dynamics.
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Fig. 3. Three-dimensional plot of (a), (b) intensity distributions
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a nonlinear thermal solution. (a), (b) Experimental measurements.
(c), (d) Comparison of the intensity profiles obtained experimentally
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