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大陆地壳究竟在哪形成, 如何形成?
牛耀龄

                                                                                         编者按 p1139

大陆弧陆壳的形成, 陆弧榴辉岩的拆沉循环及异常富集地幔熔体的成因

Cin-Ty A. Lee • Don L. Anderson
 以美国加州内华达山脉复合岩基(Sierra Nevada Batholith)为例, 证明成熟陆壳的化学成分可由地幔岩浆分异-石榴辉石岩质堆晶形成-拆沉-岩浆补给-岩
浆分异这一循环过程来解释, 并同时建立了一个简单的物理模型用以阐释拆沉作用. 在这个模型里, 陆弧的岩浆作用持续进行, 伴随岩浆分异以及地壳底
部石榴辉石岩质堆晶层的生长, 每隔10~30 My, 这一过程被拆沉作用打断, 石榴辉石岩质堆晶层拆沉进入地幔并伴随岩浆补给. 我们估计被拆沉进入地幔
的陆弧石榴辉石岩通量大约是俯冲洋壳通量的5%~20%. 被拆沉的石榴辉石岩具有可衰变到地幔储区的同位素特征所需要的微量元素组成, 因此弧石榴
辉石岩也可以是形成地幔储区的贡献之一. 此外, 由于辉石岩的起始熔融温度较低, 这种岩石通常最先被熔融, 并可能成为一些热点(hot spot)岩浆的主要
组成. 

                                                                                            评述 p1141  

自加速类贝塞尔光束: 可沿着预设空间轨道传输的光束

赵娟莹, I. D. Chremmos, 张泽, 胡毅, 宋道红, 张鹏, N. K. Efremidis, 陈志刚
 综述了多种特殊设计的自加速类贝塞尔光束. 这些光束在理论上通过相位调制或叠加等方法产生, 并经过实验装置得以验证. 其范围覆盖傍轴和大角度自
弯曲非傍轴情况, 具体包括类贝塞尔光束、自呼吸型类贝塞尔光束、涡旋型类贝塞尔光束、自螺旋型类贝塞尔光束, 以及非傍轴类贝塞尔光束. 基于这些
光束具有无衍射、自加速、自修复、光场中心对称及光束传输轨迹可调控等特点, 它们不仅具有重要的基础研究价值, 而且在微粒操控、等离子体、大气科
学、生物操控等诸多领域都具有重要的应用前景. 

                                                                                            评述 p1157

智能无机纳米超声造影剂的构建和诊疗应用

马明, 陈航榕, 施剑林
 超声造影成像因其非侵入性、风险低、价格低和轻便快捷等优势, 在肿瘤诊断方面得到了广泛的应用. 伴随着分子影像技术的进步和发展, 针对肿瘤的靶
向超声造影剂的制备和应用成为材料和医学界的研究热点. 然而, 由于粒径较大和结构稳定性差等因素, 目前常用的微泡造影剂在体内循环和成像时间较
短, 同时难以渗透到肿瘤组织和细胞内部实现有效的肿瘤造影成像. 针对以上问题, 目前国际科学界开展了氧化硅、金和氧化铁等无机基质的纳米超声造
影剂的制备和应用研究, 力求在结构和成像性能等方面大幅度提高材料的超声造影性能. 本综述主要从3个方面介绍无机纳米超声造影剂的研究进展: (1) 

新型实心、空心和多壁结构无机SiO2纳米超声造影剂的制备、成像机理和诊断应用研究; (2) 新型相转变智能超声造影剂的合成和诊疗应用进展; (3) 与光
声造影成像、磁性能和肿瘤靶向性能复合的几种代表性多功能超声造影剂的介绍, 并着重总结目前国际上关于光热治疗和超声造影复合纳米材料的研究
进展. 此外, 为了进一步提高无机超声造影剂的安全性和有效性, 提出了材料设计和临床前研究的指导性思路. 

                                                                                            评述 p1170

菊科(Haplocarpha rueppelii)的谱系地理学研究揭示东非地区可能存在阻碍植物扩散与基因交流的地理 
隔离

陈凌云, John K. Muchuku, 严雪, 胡光万, 王青锋
 东非地区是全球生物多样性热点之一. 菊科(Haplocarpha rueppelii (Sch.Bip.) Beauverd)主要分布在东非高山草甸. 本文从东非埃尔贡山、阿伯德尔山、肯
尼亚山、乞力马扎罗山、贝尔山收集了该物种有毛和无毛两种分化类型, 共65个个体进行了DNA测序, 以检验造成分化的原因(内部生殖隔离和地理隔离). 

结果表明两种分化类型并不存在内部生殖隔离. 该物种至少在更新世时期已经分布于相互毗邻的阿伯德尔山和肯尼亚山. 然而, 两山间的基因交流却很低, 

表明它们之间可能存在阻碍植物扩散与基因交流的隔离屏障. 希望这项研究能够激起更多学者对东非生物地理格局和生物多样性的兴趣. 
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自发运动型液态金属马达的宏观自驱动布朗运动

袁彬, 谭思聪, 周一欣, 刘静
 揭示了液态金属马达在碱性水溶液中类布朗运动的机制: 固-液界面接触产氢. 实验将微量铝箔(质量分数1%)融入GaIn10中, 以注射方式产生大量自主运
动型微小马达. 采用高速摄像仪记录, 并基于图像处理量化进行分析. 结果表明液态金属马达呈现高速(约4 cm/s)无序的运动模式, 我们将其命名为宏观
布朗运动. 不同于经典布朗现象, 宏观布朗运动系由液态金属合金产氢反应、液态金属马达间及其与溶液和基底的多重相互作用所致. 此外, 通过搭建类
似于威尔逊云室的光学平台可以清晰显示液态金属马达产生的氢气轨迹, 并证实驱动马达的主要因素来自氢气泡, 这与大尺寸液态金属机器主要受表面张
力驱动的机制不同. 

                                                                                            论文 p1203

用于核物理研究的激光等离子体对撞机

符长波, 鲍杰, 陈黎明, 何建军, 侯龙, 李亮, 李彦霏, 李玉同, 廖国前, Yongjoo Rhee, 孙扬, 许世伟, 袁大伟, 张杰, 张笑鹏,  
赵家瑞, 朱保君, 赵刚, 朱健强
 利用不同条件的强激光等离子体模拟天体环境引发了一门新的交叉学科——实验室天体物理学——的诞生. 元素的起源和演化是天体物理重要研究内
容之一, 它依赖于准确的核反应截面输入. 然而在传统研究中低能核反应截面数据都是在常温常压环境中测得. 其原子核和核外电子是以束缚态存在, 与天
体等离子体环境相去甚远. 核外电子云带来的电子屏蔽效应对核反应截面测量会造成很大的影响. 本文首次提出利用强激光产生的等离子体喷流对撞的
方法研究低能核反应, 并在“神光”上成功地观测到氘-氘对撞产生的中子. 这种新型的“等离子体对撞机”为强激光核物理开辟了一条新的研究途径. 

                                                                                            快讯 p1211 

直流磁控溅射中外加磁场诱导铁薄膜产生的磁各向异性

陈家慧, 马静, 伍亮, 沈洋, 南策文
 由于铁薄膜在磁隧道结、自旋阀、多铁性材料等领域中具有广泛应用, 制备取向、磁性、尤其是磁各向异性可控的铁薄膜至关重要. 本文采用在溅射过程
中施加平行于基片的直流生长磁场的简便方法, 在较低温度下诱导产生了明显的磁各向异性. 采用直流磁控溅射方法分别在MgO(001)和MgO(011)基片
上生长铁薄膜, 对比了在不同取向基片、是否施加生长磁场等条件下制备得到的铁薄膜的结构和磁性能. 研究发现施加生长磁场后薄膜的结晶度较好, 在
MgO(001)上制备的薄膜具有四重磁各向异性, 在MgO(011)上制备出的薄膜具有单轴各向异性. 而不加生长磁场时, 两种基片上制备的薄膜均为磁各向同
性. 这种方法也可以用于其他磁性薄膜的制备. 
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Abstract Over the past several years, spatially shaped

self-accelerating beams along different trajectories have

been studied extensively. Due to their useful properties

such as resistance to diffraction, self-healing, and self-

bending even in free space, these beams have attracted

great attention with many proposed applications. Interest-

ingly, some of these beams could be designed with con-

trollable spatial profiles and thus propagate along various

desired trajectories such as parabolic, snake-like, hyper-

bolic, hyperbolic secant, three-dimensional spiraling, and

even self-propelling trajectories. Experimentally, such

beams are realized typically by using a spatial light

modulator so as to imprint a desired phase distribution on a

Gaussian-like input wave front propagating under paraxial

or nonparaxial conditions. In this paper, we provide a brief

overview of our recent work on specially shaped self-ac-

celerating beams, including Bessel-like, breathing Bessel-

like, and vortex Bessel-like beams. In addition, we propose

and demonstrate a new type of dynamical Bessel-like

beams that can exhibit not only self-accelerating but also

self-propelling during propagation. Both theoretical and

experimental results are presented along with a brief dis-

cussion of potential applications.

Keywords Airy beams � Bessel beams � Vortex
beams � Nondiffracting beams � Self-accelerating �
Self-healing

1 Introduction

In 1979, Berry and Balazs [1] theoretically predicted a self-

accelerating wave solution for the free space Schrödinger

equation in the context of quantum mechanics. Such an in-

teresting wave packet, described mathematically by an Airy

function, evolves in time without spreading while acceler-

ating transversely along a parabolic trajectory. The accel-

eration (or self-bending) occurs in spite of the fact that the

center of gravity of these truncated waves remains invariant

in agreement with Ehrenfest’s theorem. This accelerating

behavior can persist over long distances until diffraction

effects eventually take over and can be explained through the

principle of equivalence [2], in which a stationary Airy wave

packet associated with a quantum mechanical particle in a

constant gravitational field can be perceived as accelerating
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upwards by a free-falling observer. Unfortunately, this ideal

Airy wave packet in quantum physics is supposed to carry

infinite energy which makes it more like a theoretical ele-

gance rather than a physically realizable entity. The interest

in this field was revived in 2007, when Christodoulides and

co-workers introduced the concept of Airy wave packets into

optics by theoretically proposing and experimentally

demonstrating the finite-energy self-accelerating optical

Airy beams [3, 4]. Since then, the interest in such noncon-

ventional self-accelerating beams has blossomed [5–7],

gifted with the ability to resist diffraction while undergoing

self-acceleration and self-healing, alongside with numerous

proposed applications [7–16], including particle manipula-

tion, curved plasma generation, bending surface plasmons

and electrons, single molecule imaging, and light-sheet

microscopy.

In the past several years, great efforts have been made to

uncover new accelerating wave solutions. In particular,

apart from the paraxial Airy beams [3–5], nonparaxial self-

accelerating beams in general capable of following curved

trajectories with large bending angles were also found di-

rectly for the Maxwell equations and demonstrated ex-

perimentally [17–20], followed by other types of

nonparaxial accelerating beams such as Mathieu and We-

ber beams [21–23]. Unfortunately, most of these solutions

cannot be used to design beams with arbitrary trajectories.

The latter are most efficiently designed using ray optics and

the concept of caustics [24]. It should be noted that ac-

celerating beams based on ray caustics are usually char-

acterized by highly asymmetric transverse intensity profiles

(such as the Airy beams with one or two oscillating tails).

An intriguing question arises naturally: can we design ac-

celerating beams that propagate along arbitrary trajectories

and yet have controllable and possibly symmetric trans-

verse profiles (such as Bessel-like or donut-shaped beam

profiles)?

Earlier works have showed that Bessel-like beam pat-

terns can be delivered along sinusoidal [25] or spiraling

trajectories [26]. An even earlier work suggested snaking

beams made of the series cascade of the so-called sword

beams [27]. These beams are formed by a different ray

structure, named conical-interference ray structure, which

sets them clearly apart from the optical caustic beams.

Quite recently, we proposed and demonstrated the self-

accelerating Bessel-like beams with arbitrary trajectories

[28, 29]. Using the concept of conical superposition, an-

gular momentum can also be loaded onto such beams re-

sulting in accelerating vortex Bessel-like beams [30, 31].

Indeed, tremendous efforts have been made for shaping the

light with various desired structures and properties [32–

41], and these studies have fueled the research interest in

beam synthesis and engineering as one of the interdisci-

plinary areas beyond optics and photonics.

In this paper, we provide a brief overview of our recent

work on spatially shaped accelerating beams along arbi-

trary trajectories, including the self-accelerating Bessel-

like beams (self-bending in transverse direction) with or

without vorticity, self-breathing Bessel-like beams (with

self-pulsating peak intensity along propagation direction),

as well as nonparaxial (with large bending angles) Bessel-

like beams [37]. In addition, we propose and demonstrate a

new class of self-accelerating beams that can also undergo

self-propelling (with multiple rotating intensity blades)

during propagation. Based on the phase modulation and

superposition method, the ability of designing various

kinds of accelerating beams with arbitrary trajectories and

symmetric transverse profile is illustrated. These spatially

shaped dynamical beams are gifted with properties such as

resistance to diffraction, capability of self-healing, con-

trollable beam profiles and tunable trajectories, which

make them particularly attractive for many applications.

2 Paraxial accelerating beams

Under the paraxial approximation, the propagation of an

optical beam obeys the Fresnel diffraction integral:

uðX; Y ; ZÞ ¼ 1

2piZ

ZZ
uðx; y; 0Þei

X�xð Þ2þ Y�yð Þ2
2Z dxdy; ð1Þ

where uðx; y; 0Þ ¼ expð�ðx2 þ y2Þ=w2Þ expðiQðx; yÞÞ is a

phase-modulated input optical fieldwith the transverse (X,Y;

x, y) and longitudinal (Z) coordinates being scaled from real

coordinate (x0, y0, z0) by a and ka2, respectively. Here,w is the

beamwidth, k is the wave number and a is an arbitrary length
scale. The input phase pattern Q(x, y) determines the ray

trajectories in free space. These rays can be designed to

create a focal curve (f(Z), g(Z),Z) andBessel function profile,

namely Bessel-like beam, as shown in Fig. 1. Specifically,

any point on this curve is the apex of a conical ray bundle

emanating from a circle on the input plane. The radius and

the location of the center of this circle are determined by the

formulas derived in Refs. [28, 29]. The center in particular is

the point at which the tangent of the trajectory at (f(Z), g(Z),

Z) intersects the input plane. This scenario is schematically

plotted in Fig. 1a. In this context, if the input condition is

obstructed along some of these circles, the main lobe at the

corresponding distance will disappear. By removing input

annuli (groups of these expanding circles) in a periodic

fashion, energy periodically disappeared from the curved

trajectory which exhibits a pulsating and breathing central

lobe and a discrete curved focal line, namely breathing self-

accelerating Bessel-like beam, as shown in Fig. 1b [32]. On

the other hand, the rays from a circle at the input plane can

also be given angular momentum to create hyperboloids

(Fig. 1c) with a minimumwaist (Fig. 1c) that guides along a
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predefined trajectory. In this way, vortex accelerating Bes-

sel-like beams are produced [30, 31].

In the following sections, we will show that the transverse

beam profiles generated via these schemes can be described

approximated by the zero-order Bessel function J0(br)
(Fig. 1a, b) and higher-order Bessel function Jm(br) in polar

coordinates (b is the normalized transverse wave number of

the Bessel beam, r = (dX2 ? dY2)1/2, and m is the order of

vorticity in Fig. 1c), and they ‘‘focus’’ at controllable dis-

tanceswhile keeping the beamstructure remarkably invariant.

2.1 Self-accelerating Bessel-like beams along smooth

trajectories

Let us start with some calculations for designing the accel-

erating Bessel-like beams, which are named so because the

beam can bend along curved trajectories with a Bessel-like

transverse beam profile. Note that the first partial derivatives

of the phase Q satisfy Qx = (f - x)/Z, Qy = (g - y)/Z,

where (x, y) marks the starting point of any ray in that conical

ray bundle, as shown in Fig. 1a. The continuum of points (x,

y, 0) creates a geometric circle C(Z) with center (x0, y0) and

radiusR(Z) on Z = 0, which can be viewed as the isocurve of a

function Z(x, y). Since Q should be twice continuously differ-

entiable, its mixed partials must be equal Qxy = Qyx, yielding

(x - x0(Z))Zy = (y - y0(Z))Zx, where x0(Z) = f(Z) – Zf 0(Z),
y0(Z) = g(Z) - Zg0(Z). After some long algebraic procedure,

the phase Q is shown to follow the formulas:

Qðx; yÞ ¼ 1

2

Z Z

0

f 0ðfÞ½ �2þ g0ðfÞ½ �2�1
n o

df

� ðf � xÞ2 þ ðg� yÞ2

2Z
; ð2Þ

Z2 ¼ ½x� f ðZÞ þ Zf 0ðZÞ�2 þ ½y� gðZÞ þ Zg0ðZÞ�2: ð3Þ

The above algorithm is well defined only when Eq. (3)

has a unique solution for Z, which is equivalent to the

following inequality:

R0ðZÞ[ Z f 00ðZÞð Þ2þ g00ðZÞð Þ2
h i1=2

: ð4Þ

Equation (4) defines the maximum propagation distance

Zmax of the focal curve. Beyond Zmax, a straight trajectory

along its tangent direction is defined, so that the

beam keeps a nondiffracting profile of a tilted standard

Bessel beam. These Bessel-like beams inherit from

standard ones the properties of diffractionless propagation

and self-healing in addition to propagating along arbitrary

trajectories. As examples, we have demonstrated parabolic,

snake-like, hyperbolic as well as 3D spiraling trajectories

[28, 29].

Figure 2 presents an example of the Bessel-like beam

following the parabolic trajectory (ðf ðZÞ; gðzÞÞ ¼
ðZ2=40; 0Þ). The phase structure shown in Fig. 2a is the one
used to modulate a broad Gaussian input beam. We have

numerically simulated the evolution of the wave using a

split-step Fourier algorithm. The beam evolution recorded

in the X–Z plane shows that the main peak follows a

parabola up to 140 cm and a straight line thereafter

(Fig. 2b). During acceleration, the transverse profiles

(Fig. 2c–f) are recorded, which reveal a remarkably per-

sistent main lobe (it is a very good fit to the function J0(r),

although elongated along the axis of acceleration). Beyond

Zmax, acceleration stops and the symmetric Bessel profile is

restored as our wave is essentially a tilted standard Bessel

beam. And Eq. (1) can be rewritten as

Fig. 1 (Color online) Schematic of the principle: Rays emitted from expanding circles on the input plane intersect on the specified focal curve.

a A self-accelerating Bessel-like beam, where the dots are the shifting circle centers [28], b A breathing self-accelerating Bessel-like beam,

where some circles are removed alternatingly so that the main lobe experiences breathing during propagation [32], c A self-accelerating vortex

Bessel-like beam, where rays are skewed from each other rather than converging as in (a) and (b) [30]
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uðX; Y ; ZÞ ¼ J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � gZÞ2 þ Y2

q� �

� exp igX � ið1þ g2ÞZ
�
2

� �
; ð5Þ

where J0 is the Bessel function and g is a constant.

Therefore, at any Z plane, the optical field around the focus

behaves like a Bessel function modulated by a plane wave.

To experimentally realize such self-accelerating Bessel-

like beams, we utilize computer-generated holography via

a spatial light modulator (SLM) that is used to modulate the

phase distribution of the input light field. A Gaussian beam

emitted from an argon ion laser passes through the SLM

programmed by a computer-generated hologram obtained

by calculating the interference between the initial optical

field and a tilted plane wave. Upon reflection from the

hologram, the encoded beam information is reconstructed

via a typical 4f system with spatial filtering. By shifting the

CCD camera along z direction, we detect the images and

record the movie at different propagation distances [29].

Figure 2c–f shows that the experimental results (bottom

row) are in good agreement with numerical simulations

(middle row). Using a similar approach, we have designed

and demonstrated Bessel-like beams that propagate along

several different types of trajectories, including sinusoidal,

hyperbolic, and hyperbolic secant trajectories lying in a

plane (2D trajectories) as well as spiraling trajectories in

3D space. In all cases, the observed trajectories agree well

with the theoretical predictions. In addition, self-healing

has also been demonstrated. In the latter work, the beam

was partially blocked by an opaque wire thus losing its

main lobe. During the subsequent propagation, the beam

recovered its main lobe and restored its structure as ex-

pected [28, 29].

2.2 Breathing self-accelerating Bessel-like beams

As mentioned in the previous sections, a self-accelerating

Bessel-like beam can be designed to exhibit a discrete (or

breathing) curved trajectory by employing the scheme

shown in Fig. 1b [32]. In this way, the intensity of the

Fig. 2 (Color online) Numerical and experimental demonstrations of a self-accelerating Bessel-like beam along a parabolic trajectory.

a Modulated input phase for the Bessel-like beam, b numerically simulated side-view propagation of the generated accelerating beam, c–
f snapshots of numerical (middle row) and experimental (bottom row) transverse intensity patterns taken at different planes marked by the dashed

lines in (b) [28, 29]
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central main lobe of these self-accelerating Bessel-like

beams displays a pulsating or breathing feature, thus named

‘‘breathing self-accelerating Bessel-like beam’’. More

specifically, the term ‘‘breathing’’ refers to that the central

lobe of the beam disappears and reappears periodically as

the energy of the beam alternately switches between the

main lobe and the outer rings during propagation. These

beams are produced by employing the initial condition

uðx; y; 0Þ ¼ exp(� ðx2 þ y2Þ=w2ÞexpðiQ1ðx; yÞÞ, where the

phase Q1 comes from a binarization of Q (the continuous

phase of the Bessel-like beams), for instance:

Q1 ¼

0; min Q�Q\min Qþ c;
1; min Qþ c�Q\min Qþ 2c;
0; min Qþ 2c�Q\min Qþ 3c;
1; min Qþ 3c�Q\min Qþ 4c;

..

. ..
.

0; 2 n=2½ � ¼ n;
1; 2 n=2½ � 6¼ n;

�
min Qþ nc�Q�max Q;

8>>>>>>>><
>>>>>>>>:

ð6Þ

where max_Q and min_Q are the maximum and

minimum values of Q, respectively, c is a constant satis-

fying the requirement 0\ c\ (max_Q–min_Q)/2, the

parameter n ¼ ½max Q=c� is the maximum integer of

max_Q/c and the square brackets are for integer conver-

sion. After being modulated by the phase Q1, the beam

carrying a Bessel-like profile exhibits pulsation during

propagation, as the peak intensity oscillates between the

main lobe and the outer rings periodically.

Specifically, we obtain Q1 from the following rules:

Q0 ¼ Q� 2c
Q

2c

	 

;

Q1 ¼
1; Q0 � c;
0; Q0\c:

�
ð7Þ

Figure 3 presents a typical example of the process used

to produce Q1. We start from a phase Q shown in Fig. 3a,

which smoothly decreases along the radial direction. Then,

Q is divided into a series of ‘‘periodic’’ rings Q0 (Fig. 3b),
which is the remainder of the Q when dividing by

2c (c = p). Here, the ‘‘period’’ 2c just means the

modulated width DQ for each ring. Finally, a ‘‘well’’-

shaped phase Q1 (Fig. 3c) is obtained from Q0 by using

Eq. (7). One can directly compare the phase structure

between Q0 and Q1 in Fig. 3d, where the phase along the

dotted line shown in Fig. 3b, c is plotted. With this phase

Q1, the beams created in Z[ 0 possess breathing

transverse Bessel-like field patterns along a desired

trajectory (f(Z), g(Z), Z) in free space.

The intuitive picture behind the evolution of the

breathing beams is illustrated in Fig. 1b. Due to the ‘‘peri-

odically’’ modulated phase Q1, the interval of the breathing

trajectory is determined by the annular width DQ at the

input plane. The intensity peak alternately switches its lo-

cation between the main lobe and the outer rings of the

Bessel-like beam. As a typical example, we consider a beam

propagating along a smooth hyperbolic trajectory in an

oscillating configuration with a binary phase as shown in

Fig. 4a. Figure 4b shows the numerical results of the

breathing beam propagation. One can see that there are nine

quasi-periodic breathings in the main lobe of the beam for

the propagation distance of 200 cm. Indeed, the quasi-pe-

riod of the breath can be controlled with ease by adjusting

the modulation width c of the rings in the phase functionQ1.

Transverse intensity patterns taken at different Z are shown

in Fig. 4c–f, where it clearly illustrates that the beam pos-

sesses the Bessel-like intensity profile, and the location of

peak intensity alternates between the central lobe and outer

rings of the Bessel-like beam during propagation. It can be

verified that these breathing Bessel-like beams also pre-

serve their self-healing property.

Our detailed analysis shows that the pulsating feature of

the peak intensity can also be introduced to the Bessel-like

beams following other trajectories such as parabolic, hy-

perbolic secant, and 3D trajectories. These beams may be

Fig. 3 (Color online) Phase structure for the generation of breathing accelerating beams as obtained from theoretical analysis. a The original

phase Q obtained from Eq. (2), b, c the phase Q0 and Q1 obtained from Eq. (7), d plots of the phase Q1 and Q0 along the dotted lines in (b) and
(c) [32]
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particularly attractive for various applications including

particle trapping and micromanipulation.

2.3 Vortex self-accelerating beams

Optical vortex beams, namely the beams that carry orbital

angular momentum (OAM), have been an interesting sub-

ject of research for many decades [42–45]. These beams

have a helical phase structure described as exp(imh), and
m indicates the multiple of 2p round-trip phase around the

vortex singularity, which is called the topological charge.

Although attempts have been made to combine the prop-

erties of accelerating Airy beams and vortex beams, it re-

mains a challenge to impose the OAM even onto the main

lobe of a simple asymmetric 2D Airy beam [46]. Recently,

we have proposed and demonstrated a new kind of self-

accelerating beams carrying OAM in the form of acceler-

ating vortex Bessel-like beams [30, 31]. These beams

propagate along a desired trajectory (f(Z), g(Z), Z), having a

profile that resembles a high-order Bessel function Jm with

an invariant central dark core.

An accelerating vortex beam can be constructed using

an approach similar to that developed in Ref. [28]. The

initial beam profile is written in terms of a smooth ampli-

tude function modulated by a helical phase Q2 as

uðx; y; 0Þ ¼ Aðx; yÞexpðiQ2ðx; yÞÞ. Utilizing Eq. (1), we get

uðX; Y ; ZÞ ¼ 1

2piZ

ZZ
Aðx; yÞ

� exp iQ2ðx; yÞ þ i
X � xð Þ2þ Y � yð Þ2

2Z

" #
dxdy

:

ð8Þ

From this equation, the overall phase of the vortex beam is

wðX; YÞ ¼ Q2ðx; yÞ þ
ðX � xÞ2 þ ðY � yÞ2

2Z
: ð9Þ

By applying the stationary phase method to the Fresnel

integral, we obtain

Fig. 4 (Color online) Numerical and experimental demonstrations of a breathing self-accelerating beam along a hyperbolic trajectory. a Binary-

modulated input phase for the breathing self-accelerating beam with f ðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:64Z2 � 32Z þ 800

p
�

ffiffiffiffiffiffiffiffi
800

p
, g(Z) = 0, b numerically simulated

side-view propagation of the generated beam, c–f numerical (middle row) and experimental (bottom row) snapshots of the transverse intensity

patterns taken at different transverse planes marked by the dotted vertical lines in (b) [32]

1162 Sci. Bull. (2015) 60(13):1157–1169

123



wX ¼ X � x

Z
; wY ¼ Y � y

Z
: ð10Þ

Via the modulation of the phase w, the rays originating

from a circle at the input plane lead to a vortex caustic at

distance Z, which creates an oblique conical-like surface

with a nonzero minimum waist (Fig. 1c).

As a typical example, we show in Fig. 5 the vortex beam

with a topological charge m = 3 propagating along a hy-

perbolic trajectory. Following a similar algorithm to obtain

the Bessel-like accelerating beams, the phase w can be

solved as shown in Fig. 5a. The recorded trajectory of the

dark core is in very good agreement with the theoretical

prediction (Fig. 5b). The beam propagates along a hyper-

bolic curve and reaches a maximum intensity and the ul-

timate deviation at about 180 cm. The beam pattern looks

similar to the higher-order Bessel beam J3 profile with a

central diffraction-free dark core (Fig. 5c–e), while the

measured beam sizes at different propagation distances

indicate that the main ring maintains almost a constant

width during propagation. In addition, the topological

charge remains unchanged even though the beam propa-

gates along the curved trajectory. Such a dynamical optical

beam combining features from the Bessel, Airy and vortex

beams may provide a new tool for optical trapping and

manipulation of microparticles when combined with opti-

cal tweezers technique [31].

2.4 Propelling self-accelerating beams

Optical propelling beams, namely the dynamical beams

that exhibit multiple rotating intensity blades, have at-

tracted great attention both due to their fundamental in-

terest and due to their potential applications [47–51]. So

far, a number of techniques have been proposed to create a

rotating optical field intensity, including revolving mirrors

[48, 52], interference of Laguerre-Gaussian modes [49, 50],

rotating apertures [51], and the Moiré-pattern technique

[53, 54]. Compared with previously developed methods,

Fig. 5 (Color online) Numerical and experimental demonstrations of a triply charged vortex beam traveling along a hyperbolic trajectory.

a Computer-generated hologram with desired phase information, b numerically simulated side-view propagation of the generated beam, c–
e numerical (middle row) and experimental (bottom row) transverse beam patterns taken at different marked positions in (b), f interferograms

from the pattern (d) with an inclined plane wave, showing the triply charged vorticity
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the Moiré technique we developed recently has the ad-

vantage that all the rotation features of the beams can be

changed at ease without any mechanical movement or

phase-sensitive interference. It is also of great interest to

introduce the propelling intensity into accelerating beams

based on the Moiré technique. In this section, such pro-

pelling accelerating beams are created and analyzed

theoretically and demonstrated experimentally. In theory,

these beams are generated by overlapping a vortex accel-

erating beam and a plane wave, i.e., u(x, y, 0) = u1(x, y, 0)

? u2(x, y, 0), where u1ðx; y; 0Þ ¼ exp �ðx2 þ y2Þ=w2ð Þ

expðiQ2ðx; yÞÞ is a vortex accelerating beam and

u2ðx; y; 0Þ ¼ expðikxÞ is a plane wave.

To create the desired Moiré fringes, we overlap a

moving straight-line grating (computer-generated holo-

gram from two plane waves) and a fork-type grating with

topological charge of m = 3 (the interference between a

plane wave and a self-accelerating vortex beam), as shown

in Fig. 6a–c. Based on the superposed gratings (Fig. 6d),

Fig. 6e clearly illustrates that the generated beam propa-

gates along a parabolic trajectory. Figure 6f–i shows nu-

merically and experimentally retrieved transverse intensity

Fig. 6 (Color online) a–d The Moiré pattern used for generating a multiblade propelling accelerating beam formed by overlapping/translating a

straight-line grating (b) with respect to a fork-type grating (c), where the fork-type grating is associated with a triply charged vortex,

e numerically simulated side-view propagation of the propelling beam, f–i numerical (third row) and experimental (bottom row) transverse

intensity patterns at different longitudinal positions marked in (e); the dashed arrow in (a) indicates the moving direction of the straight-line

grating, and the solid arrow in (f) indicates the rotating direction of the dynamical beam pattern
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patterns from the Moiré fringes of Fig. 6e at different

longitudinal positions. From these figures, it is obvious that

the beam profile consists of three intensity blades, with

each blade rotating around the central dark core due to

moving of the straight-line grating. In this scheme, the

number of intensity blades is determined by the topological

charge of the vortex. The rotation direction (marked by the

white solid arrow) depends on the direction of the grating

movement and the sign of the topological vortex charge,

and the rotation speed is proportional to the speed of the

grating motion. Overall, the Moiré pattern technique allows

convenient changes of the number of intensity blades, as

well as the rotation direction and speed of the intensity

pattern. The generation of these propelling beams repre-

sents a transition from linear translation to rotation and

from the vortex phase singularity to azimuthal intensity

variation without using any mechanical rotating system.

Likewise, a propelling and accelerating beam can also

propagate along different trajectories, as demonstrated

theoretically and experimentally. Figure 7 illustrates typical

experimental results of the generatedpropelling beams along a

3D trajectory (f(Z) = 5 tanh [0.12(Z - 10)] ? 5, gðZÞ ¼
6 sech ½0:12ðZ� 10Þ�). Figure 7a shows schematical-

ly that the reconstructed propelling beam from the Moiré

technique propagates along the 3D trajectory. Figure 7b–d

show numerical and experimental results of dynamical

transverse intensity patterns obtained with this technique at

different longitudinal positions.As seen from these results, the

rotating beam profile is primarily composed of three rotating

blades. These propelling beams bring about the possibility for

dynamic microparticle manipulation based on the Moiré

technique which is inherently immune to environmental per-

turbations. These fine-shaped dynamical light beamsmay also

find applications in micromachining and in developing mul-

tifunctional rotating optical tweezers for biological research.

3 Nonparaxial self-accelerating Bessel-like beams

In this section, we discuss briefly Bessel-like beams be-

yond the paraxial approximation [37]. Nonparaxiality plays

an important role when the transverse oscillations of a

beam are in a scale comparable to or smaller than the

operating wavelength. Under this condition, the wave

evolution is governed by the vector Helmholtz equation:

ðr2 þ k2ÞE ¼ 0: ð11Þ

According to which, the wave vector components satisfy

the dispersion relation kz ¼ ðk2 � k2x � k2yÞ
1=2

. For a given

input condition, the Helmholtz equation is solved by the

Fig. 7 (Color online) The three-blade propelling accelerating beam propagates along a 3D trajectory. a Schematic of the beam propagation, b–
d numerical (middle column) and experimental (right column) transverse intensity patterns taken at different propagation distances as illustrated

in (a)
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Rayleigh–Sommerfeld formula for one component of the

electric field vector potential

uðRÞ ¼ � k3Z

2p

ZZ
uðrÞG k R� rj jð Þeik R�rj jdr; ð12Þ

where we assume the input to be formulated by a slowly

varying envelope times a phase factor, i.e., uðrÞ ¼
UðrÞeiQ3ðrÞ, GðrÞ ¼ ir�2 � r�3 is the Green’s function, R ¼
ðX; Y ; ZÞ is the observation position, and r ¼ ðx; y; 0Þ
spans the input plane.

By modulating the input light field with the phase Q3,

the rays create a continuous focal line in the free space with

a given parametric trajectory FðZÞ ¼ ðf ðZÞ; gðZÞ; ZÞ. At
any point on this line, rays emanating from a geometric

locus in the input plane intersect and interfere to create a

Bessel-like profile. Therefore, one can realize a Bessel-like

beam following the pre-designed trajectories through em-

ploying the phase modulation shown below at the input

plane

Q3x; Q3y

� �
¼ k

FðZÞ � rj j f ðZÞ � x; gðZÞ � yð Þ: ð13Þ

For the trajectory (f(Z), 0), here g(Z) = 0, Fig. 8

shows the ray-optics schematic for the diffraction of the

potential function u(r). Rays emitted from expanding

ellipses interfere to create a curved focal line (the curve

trajectory).

Using the concept of auxiliary vector potentials, the

electromagnetic problem of a vectorial Bessel-like beam in

the nonparaxial region can be reduced to the dynamics of a

scalar wave function (a single component of a vector po-

tential) according to the above diffraction integral. Again,

the phase Q3 satisfies Q3xy = Q3yx, from which we can

obtain

Zxy x� f � Z

f 0

� �
¼ �Zy y2 þ Z

f 0
ðx� f Þ þ Z2

	 

: ð14Þ

The shape of the ellipse satisfies the following equation:

ðx� x0Þ2

a2
þ y2

b2
¼ 1; ð15Þ

where aðZÞ ¼ Z ðx� 1Þð1þ xf 02Þ½ �1=2, bðZÞ ¼
Zðx� 1Þ1=2, x0(Z) = f – xZf0, and x(Z) is an arbitrary

dimensionless function.

After some analyses, the phase at any point r on input

plane is given by Q3ðrÞ ¼ PðZÞ � k R� rj j, where Z cor-

responds to the elliptical locus C(Z) passing from this

point, PðZÞ ¼ k
RZ
0

cos½cðzÞ�
cos½rðzÞ�dz, dz=cos r ¼ dzð1þ f 02Þ1=2, and

the cone half angle c ¼ arctan x�1
1þxf 02

� �1=2

, which describes

the width of the beam’s main lobe. Providing that the input

amplitude satisfies U ¼ ð2pk?qrÞ�1=2
eip=4 (where

k\ = k sin c and qr is the distance from the axis of the

beam), the beam evolution can be expressed as

uðFþ dRrÞ � J0ðk?qrÞ exp ikk
Z

cos r
þ fr

� �	 

; ð16Þ

where kk = k cos c. Equation (16) clearly represents an

ideal diffraction-free Bessel beam that propagates with

wave vector kk. Therefore, the ray-optics approximation is

consistent with the fact that the Helmholtz equation sup-

ports the Bessel beam solutions.

As an example, the Bessel-like beam is designed to

propagate again along a parabolic trajectory. In the

simulations shown in Fig. 9, we adopt the trajectory

function ðf ðZÞ; gðZÞÞ ¼ ð0:015Z2; 0Þ and parameter

c = 30�; here, all distances are measured in wavelengths.

For a standard nonaccelerating Bessel beam, the corre-

sponding subwavelength FWHM of the central lobe can be

obtained with c value. By employing the phase structure

presented in Fig. 9a, a fully vectorial nonparaxial accel-

erating Bessel-like wave is obtained whose intensity fol-

lows a parabolic trajectory (Fig. 9b–g). Note that the

trajectory of the simulated beam agrees well with the

predesigned one. In Fig. 9e, the longitudinal component EZ

is initially weak, but its magnitude increases to become

comparable to the transverse component EX as the trajec-

tory of the beam gets more inclined. This is because the

more the wave loses its transverse nature, the more it de-

parts from the paraxial regime. For the total electric energy

density (Fig. 9g), one sees that the overall beam profile

inherits the expected Bessel-like form with familiar ring

structure (elongated along the direction of acceleration).

And the presence of the longitudinal component does not

affect the Bessel profile significantly.

Fig. 8 (Color online) Ray-optics schematic for the diffraction of the

potential function u(r). Shown on the Y = 0 plane are the global

coordinates X, Z, and at the focal point the local coordinates v, f [37]
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Inbrief, the fully vectorial nonparaxial acceleratingBessel-

like waves have been demonstrated by an appropriate

modification of the conical ray pattern of the standard Bessel

beams.Wehave found that these numerical results are in good

agreement with theoretical design, in cases of parabolic, hy-

perbolic, hyperbolic secant, and 3D trajectories. In contrast to

caustic-based beams which are highly asymmetric in their

transverse intensity distribution, these new accelerating

beams provide the convenience of a symmetric Bessel-like

intensity profile which is much needed for many applications.

4 Potential applications

All of the beams discussed above, which possess nearly

symmetric transverse beam profiles together with features

of nondiffracting, self-healing, and tunable trajectories,

may be particularly attractive for various applications al-

ready proposed [7–16], including optical microparticles

manipulation, generation of special light bullets, generation

of curved plasma channels, routing of surface plasmon

polaritons, generation of self-bending electron beams

without any external field, and high-resolution imaging and

microscopy. These promising applications have further

advanced the research of self-accelerating beams and beam

shaping in general in the fields beyond optics and photonics.

Optical manipulation of particles with lasers is an

indispensable tool across many branches of science, in-

cluding molecular biology, medicine, nanotechnology, at-

mospheric science and colloidal physics. In this field, the

leading tools are optical tweezers with specially shaped

beam profiles, which apply gradient forces and radiation

pressure on trapped transparent particles. With Bessel-like

profile, these beams can trap the micro-objects into the

central area of the beams and transport them to the desired

destination along predesigned curved route, promising for

long-range material transport. As an ‘‘optical wrench’’, the

self-propelling beams are suitable for particle grouping and

rotation owing to their dynamical intensity blades. Mean-

while, rotation of trapped particles offers another important

degree of freedom for optical manipulation, promising for

applications in biotechnology.

In atmospheric sciences, these beams possessing high

transmission efficiency and self-healing properties are de-

sirable for light propagation through the atmospheric tur-

bulence or other complex scattering media. Meanwhile,

with the self-accelerating property, these beams can be

used to generate curved plasma channels and even to

control electric discharges.

5 Summary

In this paper, we have reviewed briefly the conception and

development of dynamical spatially shaped Bessel-like

accelerating beams with a central symmetric transverse

intensity profile traveling along arbitrary trajectories.

Based on our design, the self-accelerating Bessel-like

beams, breathing Bessel-like beams and vortex Bessel-like

beams have all been demonstrated. In addition, we have

shown that it is feasible to create self-propelling while si-

multaneously self-accelerating optical beams by the use of

the phase design combined with the Moiré technique. Fi-

nally, such specially designed accelerating beams might be

synthesized beyond the paraxial region based on the ray-

optics interpretation of the rigorous Rayleigh–Sommerfeld

diffraction formula. Our results may lead to new possi-

bilities for optical beam shaping and beam engineering that

may find a variety of potential applications, while contin-

ued research on accelerating beams keeps bringing up new

Fig. 9 (Color online) Simulation results for a nonparaxial accelerating Bessel-like beam with a parabolic trajectory. a Input phase structure,

b evolution of |EX|
2 on the plane Y = 0, and c its transverse profile on the plane Z = 20 as marked in (b) with a white dashed line, d–e the same

for |EZ|
2. f–g The same for the electric energy density |EX|

2 ? |EZ|
2. b, d, f The black dashed curves in the beam center lobe indicate the

theoretical trajectory. The maps have the same color code to allow direct comparison [37]
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momentum to the arena of optical beam shaping and ap-

plications [55–64].
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