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Tuning of Bloch modes, diffraction, and refraction
by two-dimensional lattice reconfiguration
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We demonstrate controlled excitation of Bloch modes and manipulation of diffraction and refraction in op-
tically induced two-dimensional photonic lattices. Solely by adjusting the bias condition, the lattice struc-
tures can be reconfigured at ease, enabling the observation of transition between Bloch modes associated
with different high-symmetry points of a photonic band, and interplay between normal and anomalous dif-
fraction as well as positive and negative refraction under identical excitation condition. © 2010 Optical So-

ciety of America
OCIS codes: 050.1940, 080.1238, 190.5330.

Light propagating in optical periodic structures ex-
hibits intriguing behavior that has no analog in ho-
mogeneous media [1]. For instance, linear anomalous
diffraction and refraction has been observed in 1D
waveguide arrays [2-5]. In the nonlinear regime, bal-
ance of discrete diffraction and nonlinearity leads to
generation of discrete and gap solitons [6,7]. Subse-
quently, a host of fundamental phenomena were dem-
onstrated in photonic lattices, including Bloch and
Rabi oscillation [8,9], bandgap guidance through de-
fects [10], and Anderson localization [11], to name
just a few. Most of the experiments were done in op-
tically induced lattices, where their structures can be
reconfigured at ease by varying the intensity/pattern
of the lattice-inducing beam (LIB).

Quite recently, we proposed that the anisotropic
nonlinearity in a nonconventionally biased (NCB)
photorefractive crystal could be used for self-trapping
of novel spatial solitons, including discrete elliptical
and “saddle” solitons [12—-14]. In this Letter, we dem-
onstrate theoretically and experimentally that, with
lattice reconfiguration under the NCB condition, lin-
ear propagation of a 2D optical (probe) beam can be
tailored. With the same LIB and without the need of
changing the probe beam itself, we observe that the
probe beam excites Bloch modes associated with dif-
ferent high-symmetry points, displays normal and
anomalous diffraction, and exhibits positive and
negative refraction simply by lattice reconfiguration.
Our results could be relevant to similar phenomena
in other reconfigurable discrete systems.

The steady-state propagation of a probe beam in a
2D photonic lattice under the NCB condition is gov-
erned by the following dimensionless equations [12]:
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where V=x(d/dx)+y(d/dy), B(F) is the amplitude of
the probe beam, ¢ is the light-induced electrostatic
potential, 6, and 6, represent the angle of the bias
field E, and that of the crystalline ¢ axis relative to
the x axis, I=V(x,y)+|B(#)? is the normalized total
light intensity, V(x,y)=cos?(mx/A)cos®(my/A) corre-
sponds to the intensity of the LIB with A being the
spatial period, and the light-induced refractive
index changes are determined by (d¢/dx)cos 6,
+(d¢p/ dy)sin 6,. We use Eq. (1) for our modeling and
use a setup similar to that in [13,14] for experiment.
The periodic refractive index changes (index lattices)
are induced with a gridlike intensity pattern (i.e., a
periodically modulated LIB) in a biased crystal [5
X 10X 5(c) mm® SBN:60]. Typical induced lattice
structures with the same LIB but under different
bias conditions are presented in Fig. 1, where the top
and bottom rows correspond to calculated index dis-
tributions and experimentally observed plane-wave
guidance patterns of the induced lattices. For all re-
sults shown in Figs. 1(a)-1(d), the LIB has the same
period of 17 um, and the induced lattices approxi-
mately possess the same refractive index modulation
of 1.5 1074, but the direction (relative to the ¢ axis)
and magnitude of the bias field are varied. Clearly,
the induced lattice structure varies under different
bias directions. Not only is the shape and orientation
of individual lattice site changed, but also the loca-
tions of the index maxima can be shifted significantly
with respect to those of the intensity maxima of the
LIB, as driven by enhanced anisotropy and nonlocal-
ity [13]. The experimentally observed near-field pat-
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Fig. 1. (Color online) (top) Calculated refractive index dis-
tributions and (bottom) experimentally observed plane-
wave guidance pattern of the optically induced lattices un-
der different conditions. Solid and dashed arrows in the
first row represent the directions of the ¢ axis and bias
field, and the white circle corresponds to an intensity spot
of a square lattice-inducing beam. (a)-(d): 6,=6,=0; 6,=6,
=mu/4; 6,=0, 0,=m/2; 0,=7/4, 6,=37/4. The corresponding
bias fields are 2.4, 3.4, 8, and 3.2 kV/cm, respectively.

terns of the induced lattices are in good agreement
with results from our theoretical calculation.

We now focus on the behavior of a probe beam
propagating linearly through the above induced lat-
tices. Take Figs. 1(c) and 1(d) as an example; the pe-
riod and orientation of these two induced lattice are
quite different. We found that the first Brillouin zone
(BZ) of the lattice in Fig. 1(c) happens to be overlap-
ping with the second BZ of the lattice in Fig. 1(d).
Therefore the high-symmetry M; point in one setting
[Fig. 1(d)] corresponds to the X; point in another set-
ting [Fig. 1(c)], as also illustrated in the band dia-
grams in Figs. 2(a)-2(c). This enables the excitation
of Bloch modes associated with different high-
symmetry points [15] in the first band with same ex-

Fig. 2. (Color online) Demonstration of Bloch-mode tran-
sition by lattice reconfiguration. (a) and (b) illustrate the
first-band diagram corresponding to lattices of Figs. 1(d)
and 1(c), respectively; (c) shows the boundary of the first
BZ for (a) and (b); (d)—(g) are (top) calculated and (bottom)
experimentally observed [(d), (f)] intensity and [(e), (g)]
phase structures of Bloch modes excited at the solid green
spots marked in (a)—(c) for lattices illustrated [(d), (e)] in
Fig. 1(d) and [(), (g)] in Fig. 1(c).
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citation scheme. Typical results are shown in Figs.
2(d)—2(g), where the Bloch modes are excited in these
two lattices established under different NCB condi-
tions. In our experiment, the probe beam is tilted at
the same angle to excite the Bloch modes at M;/X;
point marked by a solid (green) dot in Figs. 2(a)-2(c).
With both the probe beam and the LIB kept un-
changed, transition between Bloch modes at M;
[Figs. 2(d) and 2(e)] and X; [Figs. 2(f) and 2(g)] is re-
alized by rotating the biased crystal 45° about the z
axis. The measured intensity and phase (via interfer-
ence) structures confirmed such a transition, in excel-
lent agreement with calculated results.

Since beam diffraction in 2D lattices depends on
the position of its Bloch momentum vector within the
BZ, we next show the transition between normal and
anomalous diffraction using the above overlapping
BZs. The region of normal diffraction for one lattice
[Fig. 1(c)] but of anomalous diffraction along %, for
other lattices [Figs. 1(a), 1(b), and 1(d)] can be iden-
tified (marked by a black circle in Fig. 2). By employ-
ing a tilted Gaussian beam (waist located before the
front facet of the crystal) as probe whose transverse
k-vector corresponds to the black circle in Fig. 2, we
observe different 2D diffraction patterns coming from
different lattices, as shown in Fig. 3. Clearly, the
beam exhibits normal diffraction in both transverse
directions in Fig. 3(c) but anomalous diffraction along
k. in Figs. 3(a), 3(b), and 3(d). Such anomalous dif-
fraction has been demonstrated previously either by
tuning the angle in 1D lattices [2] or tuning the non-
linearity in 2D lattices [15], but here the transition
between linear normal and anomalous diffraction is
realized with the same input tilt simply by reconfig-
uring the 2D photonic lattices.

Finally, we show that by lattice reconfiguration a
probe beam can also excite Bloch modes from differ-
ent bands, permitting the transition between normal
(positive) and anomalous (negative) refraction [3]. An
example is illustrated in Fig. 4, where the two-beam
excitation technique [4] is employed to selectively ex-
cite Bloch modes. The angle between the two input
beams is set to be twice of the Bragg angle, while the
added input direction of the two interfering beams is
tilted by a half Bragg angle. Under this condition, the

Fig. 3. (Color online) Demonstration of 2D normal and
anomalous diffraction by lattice reconfiguration. (a)—(d)
Numerical (top) and experimental (bottom) results of out-
put diffraction patterns of the same probe beam [excitation
position marked by the circles in k-space of Figs. 2(a)-2(c)]
from the four lattices shown in Figs. 1(a)-1(d), respectively.
The crosses indicate the center of the input beam.
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Fig. 4. (Color online) Demonstration of 2D positive and
negative refraction by lattice reconfiguration. (a) Excitation
scheme with locations in k-space of the two input beams
marked by circles in inset. (b) Direction of refracted light
(marked by arrows) at the first- and second-band diffrac-
tion curves. (c), (g) Illustration of light refraction from the
first and second bands. (d)—(f) Numerical (top) and experi-
mental (bottom) results of the output probe beam from lat-
tices in Figs. 1(b)-1(d), respectively. The crosses indicate
the center of the two beams at input.

k, component of one of two beams is positioned inside
the first BZ, but that of the other beam is outside [in
lattices of Figs. 1(b) and 1(d)]. In addition, the inter-
ference maxima of the two beams are kept overlap-
ping with the intensity maxima of the LIB. However,
as seen in Fig. 1, reconfiguration of the lattices could
result in a change from on-site to off-site excitation
[e.g., from Fig. 1(b) to Fig. 1(d)]. This in turn leads to
a change of excitation of Bloch modes from the first to
the second band [Fig. 4(b)], and therefore a change of
apparent refraction of the probe beam from anoma-
lous [Figs. 4(c) and 4(d)] to normal [Figs. 4(f) and
4(g)]. Three cases are shown in Figs. 4(d)—4(f), corre-
sponding to outputs from lattices of Figs. 1(b)-1(d),
respectively. For all these cases, the input direction of
the two beams (or the direction of total energy flow)
is initially tilted toward the left, and it bends further
to left in Figs. 4(f) and 4(g) owing to dominant exci-
tation of the second-band Bloch modes by both beams
in the periodic structure. However, it bends back to
the right (anomalous refraction) in Figs. 4(c) and 4(d)
owing to dominant excitation of the first-band Bloch
modes [Fig. 4(b)]. From the direction of the energy
flow depicted in Fig. 4(c), it can be seen that the
anomalous refraction represents just a negative re-
fraction of energy flow, similar to that observed in
other periodic systems [16]. Since the input pattern
from the two-beam interference does not perfectly
match that of the first-band Bloch mode, a weak
second-band excitation also occurs in Fig. 4(d) where
the left spot does not disappear completely. For the

lattice shown in Fig. 1(c), both input beams excite dif-
ferent first-band Bloch modes within the same first
BZ owing to an increased size of BZ in this case, and
thus the directions of the energy flow of the two
beams cannot be reoriented to the same direction
[Fig. 4(e)].

In summary, we have demonstrated controllable
tuning of Bloch modes, diffraction, and refraction by
sending a 2D probe beam into reconfigurable photo-
nic lattices. Our results may have direct impact on
the studies of wave dynamics in other reconfigurable
periodic systems.
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