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Three-dimensional nonparaxial beams in parabolic
rotational coordinates
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We introduce a class of three-dimensional nonparaxial optical beams found in a parabolic rotational coordinate
system. These beams, representing exact solutions of the nonparaxial Helmholtz equation, have inherent parabolic
symmetries. Assisted with a computer-generated holography, we experimentally demonstrate the generation of
different modes of these beams. The observed transverse beam patterns along the propagation direction agree well

with those from our theoretical predication.
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Optical beams with subwavelength scales yet large bend-
ing angles are desirable for a variety of applications
including near-field optical microscopes, plasmonics,
and optical manipulation of nanoparticles [1-3]. Under
the condition of large beam divergence or large beam
bending, the conventional paraxial theory cannot fully
describe the beam propagation. Therefore, free-space
propagation of optical beams beyond the paraxial
approximation continues to be a topic of great interest.
To analyze nonparaxial optical beams, a few approaches
have been developed: one is based on the high-order cor-
rections to the known paraxial solution [4-6]; and the
other relies on the so-called complex point source model
[7]. In fact, nonparaxial beams should be described by
wave equations without the paraxial approximation. In
other words, such beams must be analyzed from the non-
paraxial Helmholtz equation. Thus far, quite a few exam-
ples of nonparaxial beams have been obtained in
different coordinate systems [8-13].

Motivated by the recent surge of interest in self-
accelerating beams demonstrated from paraxial [14,15]
to nonparaxial [16-20] regimes, we study in this Letter
nonparaxial beams in parabolic rotational coordinates.
We theoretically formulate and experimentally demon-
strate such nonparaxial beams. Different from invariant
propagation of nondiffracting Bessel beams, these beams
exhibit the parabolic rotation symmetry during propaga-
tion, with their envelopes following along parabolic
trajectories. Good agreement is found between experi-
mental observation and our theoretical predication. We
point out that although the exact solution of the Helm-
holtz equation in parabolic rotational coordinates has
been studied for quantum mechanics and acoustics
[21,22], the nonparaxial beams of parabolic rotational co-
ordinates have never been introduced or demonstrated in
optics. The propagation of nonparaxial optical beams in
free space can be described by the following three-
dimensional (3D) Helmholtz equation:
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where U(x,y,2) is the complex amplitude of the
light field propagating along z, k = kyny, kg = 27/4, is
the wave number in vacuum, and 7, is the refractive
index of the medium. Introducing x = &y cos @,
y=¢&psin @, z-2=(2-p2)/2 [2122] (where z,
is a positive constant), ¢ € (0,0), € (0,0), and
D e (0,27:), the parabolic rotational coordinates can
be established. The constant £ and 5 surfaces are both
paraboloids with respect to the z axis, respectively.
The parabolic rotational coordinate system is an orthogo-
nal curvilinear one [21,22]. If we use the method of sep-
aration of variables, letting U (&, 5, ®) = M(E)N(7)O(D),
where M, N, and ® are complex functions, we obtain
in the parabolic rotational coordinates system the follow-
ing equations:
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2 2
% + m20(®) = 0, (20)

where m and «a are the separation constants. Solutions
of Egs. (2a) and (2b) are given by hypergeometric
functions [23]. Collecting the solutions of Egs. (2a)—(2¢),
we construct the exact solution of the 3D Helm-
holtz as
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From Eq. (3), the nonparaxial beams in parabolic

rotational coordinates as exact solutions of Eq. (1) in
the laboratory frame can be expressed as
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where w, is a positive parameter with length dimension,
r = /2% + y% + (20 - 2)%, and m corresponds to the azi-
muthal eigenvalue as referred to the topological charge
for optical vortices. At i@ =0 and 2(m + 1), Eq. (4)
describes the Bessel wave [21,22] and the vortex plane
wave. When 4o is an integer and ia < -2(m + 1),
Eq. (4) becomes the Laguerre wave [23]. When m = 0,
Eq. (4) represents the fundamental solution of a nonpar-
axial parabolic rotational coordinate beam. We point
out that the divergence angle of the beam is determined
by the parameters in Eq. (4). Under paraxial approxima-
tion, namely r~z + (2% + ¥?)/(22), Eq. (4) becomes
the solution of paraxial beams in parabolic rotational
coordinates.

We point out that one can readily deduce from Eq. (2)
that the nonparaxial beams in parabolic rotational coor-
dinates are scalable. In our experiment, the nonparaxial
beams in parabolic rotational coordinates are realized by
employing the technique of computer-generated hologra-
phy as reported in our previous work [24,25]. Intensities
in Figs. 1-4 have been rescaled for better visualizations.
All the normalized intensity is the raw intensity divided
by the maximum intensity for simulation; the rescaled
intensity is obtained by adjusting the attenuator for the
experiment.

Figure 1 shows examples of exact solutions of
(00)-, (11)-, and (23)-mode nonparaxial beams from the
Helmholtz equation in parabolic rotational coordinates.
The side-view propagation [Figs. 1(c), 1(f), 1(1)] and
the iso-intensity contour [Figs. 1(j)-1(1)] indicate that
the evolution of the beam envelope follows parabolic
curves. Figure 1(c) shows that the (00)-mode beam
reaches a minimum beam width at z = 2, = 2 cm, while
its axial intensity along the propagation axis alternates
between bright and dark distributions, forming bottle-
like structures potentially useful for optical trapping
[24]. Figures 1(d)-1(f) and 1(g)-1(i), along with the 3D
iso-intensity contours [Figs. 1(k) and 1(1)] present exam-
ples of high-order mode solutions, where it can be seen
that the axial intensity is always minimum (forming a
central dark core) due to existence of nonzero vortices
(corresponding to m = 1 and m = 2, respectively).
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Fig. 1. (a)-(c) Exact (00)-mode; (d)-(f) exact (11)-mode; and
(2)-(1) exact (23)-mode nonparaxial beams in parabolic rota-
tional coordinates; (a), (d), (g) normalized amplitude distribu-
tion at 2z = 2 cm; (b), (e), (h) phase distribution at z = 2 cm;
(c), (f), and (i) the normalized intensity evolution on the x =
0 plane; iso-intensity contour of (j) exact (00)-mode, (k) (11)-
mode, and (1) (23)-mode of the nonparaxial beams in parabolic
rotational coordinates; 2, = 2 cm and wy, = 1 mm.

Numerical beam propagation and experimental results
corresponding to the three modes shown in Fig. 1 are
presented in Figs. 2—4. For experimental generation,
we launch a broad beam (1 = 488 nm) to reconstruct
the off-axis holograms of the desired beam profiles en-
coded in a spatial light modulator [24,25]. The holograms
are obtained by computing the off-axis interference

Fig. 2. Numerical and experimental demonstrations of the
exact (00)-mode nonparaxial beams in parabolic rotational co-
ordinates. (a) Computer-generated hologram; (b) numerically
simulated side-view propagation of the generated beam;
(c) phase of the initial generated beam; (d)—(g) snapshots of
the normalized transverse intensity patterns taken at the planes
marked by the dashed lines in (b); (h) interference phase of the
initial generated beam and a plane wave; (i)—(1) experimentally
recorded normalized transverse beam patterns at different
positions (marked in dashed curve with z = 11.7, 24.5, 37.5,
and 51 cm) corresponding to (b); 2y = 37.56 cm.
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Fig. 3. Description is the same as that in Fig. 2 except the
nonparaxial beams in parabolic rotational coordinates are
the (11)-mode.

y(mm)

Fig. 4. Description is the same as that in Fig. 2 except the
nonparaxial beams in parabolic rotational coordinates are
the exact (23)-mode.

patterns between the complex amplitude profile of the
parabolic rotational coordinate beams at the z = 0 plane
and a plane wave [see Figs. 2(a), 3(a), and 4(a)]. After
reflecting from the hologram, the encoded complex am-
plitude information is rebuilt via a spatial filtering
4f system. The transverse beam patterns at different
propagation distances are recorded by a CCD camera,
as shown in the bottom panels in Figs. 2—4 for the three
different modes. Apparently, the evolution of the rebuilt
beam envelope from the hologram follows parabolic
curves as shown in Figs. 2(b), 3(b), and 4(b). The trans-
verse intensity patterns taken at different propagation
distances indicate clearly that the (00)-mode beam
undergoes periodic oscillation in central intensity, vary-
ing between bright and dark central spots, whereas the
(11)-mode and (23)-mode beams always have dark vor-
tex cores in their axial intensity. Clearly, the nonparaxial
beams in parabolic rotational coordinates reach to a min-
imum beam spot after a certain propagation distance
and expand thereafter. These observations are in good
agreement with theoretical predictions and numerical
simulations.

In summary, 3D nonparaxial beams of parabolic
rotational coordinates have been found theoretically
by solving the Helmholtz equation and demonstrated
experimentally by employing computer-generated

holography. Our experimental results agree well with
the theoretical analysis.
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