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We predict and experimentally observe three-dimensional
microscale nonparaxial optical bottle beams based on the
generation of a caustic surface under revolution. Such bottle
beams exhibit high contrast between the surrounding
surface and the effectively void interior. Via caustic engi-
neering, we can precisely control the functional form of
the high-intensity surface to achieve microscale bottle
beams with longitudinal and transverse dimensions of
the same order of magnitude. Although, in general, the
phase profile at the input plane can be computed numeri-
cally, we find closed-form expressions for bottle beams with
various types of surfaces both in the real and in the Fourier
space. © 2018 Optical Society of America
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(260.2110) Electromagnetic optics; (350.7420) Waves.
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An optical bottle beam has a low-intensity central spot that is
surrounded by a high-intensity region in three-dimensional
space. Since its prediction [1], several techniques have been
proposed for the generation of such beams [2–10]. These meth-
ods mainly utilize on-axis destructive interference of beams at
the focus with different parameters/properties. Optical bottle
beams are mainly used in particle manipulation for trapping
and transporting particles. An alternative method for the
generation of bottle beams that relies on the use of caustics
under revolution has been suggested and implemented in
Refs. [11,12]. Such bottle beams are closely related to the effect
of abrupt autofocusing [13–15] of accelerating beams [16,17].
A main advantage in this case is that the radius of the surround-
ing high-intensity surface can be designed to follow arbitrary
convex shapes with precision as a function of the propagation
distance (r�z�). However, such bottle beams are thus far
generated in the paraxial regime, and, as a result, they have
an elongated profile not favorable for single-particle trapping
and manipulation.

In this Letter, we predict and experimentally observe
nonparaxial optical bottle beams at the microscale that are gen-
erated by a caustic surface under revolution. The resulting
waves have high-intensity contrast between the void region
and the surrounding surface, and bottle shape that can be en-
gineered with precision even at the microscale. In addition, the
length scales in the transverse and longitudinal directions can
be made to be comparable. In general, the phase profile at the
input plane is obtained numerically. Here we find closed-form
expressions for bottle beams with spherical, ellipsoid of revo-
lution, and paraboloid surfaces that are generated either in
the real or in the Fourier space.

We start by considering the beam propagation of an optical
wave in a linear, homogeneous, and isotropic medium and fol-
low a similar procedure as in Ref. [18]. Utilizing Gauss’ law
∇ ·D � 0, the electric field is expressed as

E � −
1

ϵ
∇ × F , (1)

where F is an auxiliary vector potential and ϵ is the electric
permittivity. In the case of monochromatic waves and assuming
a linear polarization for the auxiliary field F � ŷF , we find that
F satisfies the Helmholtz equation,

�∇2 � k2�F � 0, (2)

where k � nω∕c � 2π∕λ, ∇2 � ∂2x � ∂2y � ∂2z , �x, y�, and
�r, θ� are the transverse coordinates in Cartesian and polar
form, and z is the propagation coordinate. We assume that
at the input plane F is radially symmetric, F �z � 0� �
ŷF�r, z � 0�. Due to the symmetries of the Helmholtz equa-
tion, the auxiliary vector potential maintains its radial profile
upon propagation, i.e., F � ŷF �r, z�. Substitution to Eq. (1)
then leads to

E � �1∕ϵ��x̂∂zF − ẑ cos θ∂rF�: (3)

In Eq. (3), we notice that the x component of the electric field
is radially symmetric, whereas the z component exhibits a
dipolar structure. In the rest of this Letter, we prefer to depict
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the intensity along the x–z plane where the amplitude attains a
maximum as a function of θ.

The solution of Eq. (2) is given by the following Hankel
transform pair:

F�r, z� � 1

2π

Z
∞

0

F̃ �k⊥�J0�k⊥r�eikz zk⊥dk⊥, (4)

F̃ �k⊥� � 2π

Z
∞

0

F �ρ, z � 0�J0�k⊥ρ�ρdρ, (5)

with ρ being the radial polar coordinate at the input plane
[ρ � r�z � 0�]. Using large argument asymptotics for the
Bessel function; decomposing the fields in Eqs. (4) and (5)
into amplitude and phase as F �ρ, z � 0� � A�ρ�eiϕ�ρ�,
F̃ �kx� � Ã�kx�eiϕ̃�kx�; and applying first- and second-order
stationarity of the phase, we derive the ray equation,

r � ρ� ϕ 0�ρ�z
kz�ϕ 0�ρ�� , (6)

and the relation for the high-intensity surface of the beam
under revolution. More importantly, we can find the phase
at the input plane,

ϕ 0�ρ� � k�df ∕dzc�
�1� �df ∕dzc�2�1∕2

, (7)

that is required for a beam that forms the predefined caustic
surface under revolution (z is the axis of rotation) rc � f �zc�,
where ρ � f �zc� − zcf 0�zc� and the subscript c stands for
caustic. In general, Eq. (7) can be integrated numerically.
Below we will consider three different classes of caustic
surfaces—namely spherical, ellipsoid of revolution, and
paraboloid—that are associated with closed-form expressions
for the phase at the input plane.

We start with the case of a bottle beam with spherical surface
r�z� � �R2 − �z − z0�2�1∕2 − r0, where R is the radius and
�−r0, z0� is the center (and thus R > r0). The bottle beam ex-
tends in the longitudinal direction between z0 � �R2 − r20�1∕2,
and its length is Lz � 2�R2 − r20�1∕2, while its diameter is
D � 2�R − r0�. The condition z0 > �R2 − r20�1∕2 should be
satisfied so that the entire bottle is located after the plane of
incidence. Following the relevant calculations, from Eq. (7)
we obtain

F�ρ, z � 0� � A�ρ��eiΦ�r0�ρ� � eiΦ�r0−ρ��, (8)

where

Φ�x� � k
�
R
�
arctan

�
x
z0

�
� arctan

�
u�x�
R

��
− u�x�

�
, (9)

and u�x� � �x2 � z20 − R
2�1∕2.

Typical simulation results are shown in Fig. 1. The initial
amplitude distribution is A�ρ� � 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� r0

p
, while the aper-

ture ρa is selected to be slightly larger than the radius of the ray
that is tangent at the second focal point of the bottle. We see
the formation of a bottle beam with a spherical surface. The
agreement between theory and simulations is very good. In
Figs. 1(a)–1(e), the high-intensity ring profile at different cross
sections in the transverse plane is depicted. In all of these plots,
the contrast between the almost void interior of the bottle and
the high-intensity ring is very high. From Eq. (3), we see that

the intensity of each ring is not uniform due to the z compo-
nent of the electric field. In particular, the intensity is modu-
lated in a sinusoidal fashion with the angular coordinate taking
maximum along the x axis and its minimum along the y axis.
However, these slight intensity variations are mild since the
z component of the electric field is smaller as compared to
the x component.

Closed-form expressions can also be found for bottle beams
with a spheroid (ellipsoid of revolution) surface profile.
Specifically, the radius of the bottle beam is given by the
expression

r�z� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −

�
z − z0
a

�
2

s
− r0: (10)

In the above equation, �−r0, z0� is the center and R, aR are
the semi-axes in the transverse and the longitudinal directions
of the spheroid. The bottle extends in the longitudinal
direction between z0 � a�R2 − r20�1∕2, and thus its length is
Lz � 2a�R2 − r20�1∕2. In the transverse direction, its diameter
is D � 2�R − r0�. Following the relevant calculations, we find
that the vector potential at the input plane should be given by

F�ρ, z � 0� � A�ρ��eiΦ�σ−�r0�ρ�� � eiΦ�σ��r0−ρ���, (11)

where the associated phase is

Φ�σ� � ka
σ2 − 1

 ffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1

a2
− 1

�
σ2

s �
z0
a
− Rσ

�

� �1 − σ2�RE
�
sin−1�σ�

����1 − 1

a2

�!
, (12)

σ��ρ� �
R z0

a � ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 �

�
z0
a

	
2
− R2

r

ρ2 �
�
z0
a

	
2

, (13)

and E �ϕjm� is the elliptic integral. Simulation results in the case
of an oblate (a < 1) spheroidal bottle beam are shown in Fig. 2.
The initial amplitude profile is selected as A�ρ� � 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� r0

p
.

Fig. 1. Optical bottle beam with a spherical surface having
R � 158λ, r0 � 140λ, and z0 � 175λ. In (f ), the intensity distribu-
tion is shown in the y � 0 plane in logarithmic scale. The white
dashed–dotted curve is the theoretical design for the surface of the
bottle, and the vertical white dashed lines denote the different intensity
cross sections in the x–y plane shown in (a)–(e).
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This is a strongly nonparaxial bottle beam with s � Lz∕D � 1.
In comparison to the spherical case, here the z component of
the electric field is stronger, leading to a visible sinusoidal
modulation of the intensity in the transverse plane as a function
of the angular coordinate.

We have also found closed-form expressions for bottle
beams with paraboloid surfaces of the form

r�z� � −az2 � bz − c: (14)

The above equation can be expressed as

r0 − r � �z − z0�2∕L,
where D � 2r0 � 2a�b2∕�4a2� − c∕a� is the diameter of the
bottle beam in the transverse plane at z0 � b∕�2a�, L �
1∕a determines the curvature of the surface, and its length
is Lz � 2

ffiffiffiffiffiffiffi
r0L

p
. Following the relevant calculations, we find

that the phase of the auxiliary field

F �ρ, z � 0� � A�ρ��eiΦ�c�ρ� � eiΦ�c−ρ��, (15)

is given by

Φ�x� � −
k
4a

h
v��x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v−�x�2

p
� sinh−1�v��x��

i
, (16)

with v��x� � b� 2
ffiffiffiffiffi
ax

p
. The existence condition for the

paraboloid bottle beam r0 > 0 translates to b >
ffiffiffiffiffiffiffi
4ac

p
.

Figure 3 presents simulation results of a paraboloid bottle beam
with a ratio s � Lz∕D � 3.87. The initial field amplitude
is A�ρ� � 1∕

ffiffiffiffiffiffiffiffiffiffiffi
ρ� c

p
.

The generation of bottle beams as described above requires
the modulation of both the amplitude and the phase of the
beam at the input plane. However, as shown in Refs. [11,12],
the experimental complexity is significantly reduced if such
beams are generated in the Fourier space. Specifically, it is suf-
ficient to utilize the natural Gaussian mode of the laser and
modulate only the phase. The following equation relates the
phase in the Fourier space with the trajectory of the beam [19]:

∂Φ�ρ�
∂ρ

� r�z� − z∂z r�z�
f

, (17)

where

ρ � −f
∂z r�z�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �∂z r�z��2
p , (18)

and f is the focal length of the objective. In our calculations,
we select the following initial condition in the Fourier space:

F �ρ, z � 0� � A�ρ��e−iΦ�ρ� � e−iΦ�−ρ��: (19)

In the three classes of nonparaxial bottle beams discussed above,
the Fourier space phase profile can be analytically derived by
utilizing Eqs. (17) and (18). Specifically, in the case of a bottle
with a spheroid or spherical (a � 1) surface, the phase is
given by

Φ�ρ� � kfRE�sin−1�ξ�j1 − a2� − �1 − ξ2�1∕2z0 − r0ξg, (20)

where ξ � ρ∕f . Finally the phase for a paraboloidal surface in
the Fourier space is

Φ�ρ� � k
4a

��b2 − 1�ξ� 2b�1 − ξ2�1∕2 � tanh−1�ξ�� − kRξ,
(21)

where ξ � ρ∕f .

Fig. 2. Optical bottle beam with a spheroidal surface having
R � 50λ, r0 � 30λ, z0 � 50λ, and a � 0.5. The initial amplitude
and phase profile of the auxiliary field F is shown in (a) and (b), re-
spectively. In (h), the intensity distribution is shown in the y � 0 plane
in logarithmic scale. The white dashed–dotted curve is the theoretical
design for the surface of the bottle, and the vertical white dashed lines
denote the different intensity cross sections in the x–y plane shown
in (c)–(g).

Fig. 3. Optical bottle beam with a paraboloidal surface having
c � 69.7λ, a � 0.003∕λ, b � 1.05, z0 � 175λ. In (f ), the intensity
distribution is shown in the y � 0 plane in logarithmic scale. The
white dashed–dotted curve is the theoretical design for the surface
of the bottle, and the vertical white dashed lines denote the different
intensity cross sections in the x–y plane shown in (a)–(e).

Fig. 4. Experimental observation of a spheroidal bottle beam with
λ � 632.8 nm and the same parameters as those of Fig. 1. In (f ), the
intensity distribution is shown in the y � 0 plane. The white dashed
curve is the theoretical design for the surface of the bottle, and the
vertical white dashed lines denote the different intensity cross sections
in the x–y plane shown in (a)–(e).
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In the experiment, these phases can be wrapped between 0
and 2π, and generated by employing a computer-assisted spatial
light modulator (SLM). Then such a phase modulation is
projected into the back focal plane of an objective (×60,
NA � 0.85). Once a properly aligned broad laser beam
(λ � 632.8 nm) illuminates the SLM, the associated bottle
beams are produced near the focal plane of the objective.
The beam patterns are recorded by using a microscope system
(made of another objective and a CCD) positioned on a
motorized translation stage. The generated spherical and
paraboloidal bottle beams by using the phase calculated from
Eqs. (20) and (21) are presented in Figs. 4 and 5, respectively.
Both beams exhibit a high contrast between the void interior
and the high-intensity surface that follows perfectly along the
designed trajectory. These experimental observations agree well
with our theoretical prediction.

In summary, we have predicted and experimentally observed
nonparaxial optical bottle beams at the microscale generated
by a caustic surface under revolution. Their transverse and
longitudinal dimensions can be made to be comparable and
thus favorable for single-particle trapping and manipulation.

The functional form of the surface can be designed to take
arbitrary convex shapes while the intensity contrast between
the surface and the interior of the bottle is very high.
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