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We demonstrate both theoretically and experimentally that a nonlinear beam can be reflected by a negative
defect in a photonic lattice if the incident angle is below a threshold value. Above this threshold angle, the beam
simply passes through the defect. This phenomenon occurs in both one- and two-dimensional photonic lattices,
and it provides a way to use the incident angle to control beam propagation in a lattice network. If the defect
is absent or positive, no evident transition from reflection to transmission occurs. These nonlinear phenomena
are also compared with linear nondiffracting-beam propagation in a photonic lattice with a defect, and both
similarities and differences are observed. In addition, some important features in linear and nonlinear beam
propagations are explained analytically by using a linear model with a delta-function defect.

DOI: 10.1103/PhysRevA.83.033836 PACS number(s): 42.65.Tg, 42.70.Qs

I. INTRODUCTION

Light propagation in waveguide arrays and photonic lat-
tices has been attracting a lot of interest in recent years
due to many novel effects exhibited by wave propagation
in periodic structures. Examples include linear diffraction
management, nonlinear light localization under self-focusing
or self-defocusing nonlinearity, and light routing in lattice
networks [1–4]. Light guiding by defects (or band-gap
guidance) in waveguide arrays and photonic lattices has
also been demonstrated both theoretically and experimentally
[5–11]. In addition, recent experiments with laser-written
waveguide arrays with structured defects or optically induced
photonic lattices with tunable negative defects have led to the
observation of two-dimensional (2D) defect surface solitons
[12] as well as linear vortex defect modes [13]. Trapping
of moving solitons by linear and nonlinear defects in a
one-dimensional (1D) waveguide array has been proposed as
well [14]. Very recently, localized defect modes have been
observed with phase defects rather than amplitude defects in
photonic structures [15,16]. In applications of photonic lattices
for information processing, an important task is to identify
mechanisms to change the propagation direction of light beams
inside the lattice network. This problem has been investigated
by having a soliton traveling in a specially designed lattice
network or interacting with a blocker soliton [3,17–20]. In
particular, it was shown that a weak (linear) probe beam
launched at the zero-diffraction angle could be reflected by
bright and dark soliton blockers [17,19].

In this article, we demonstrate both theoretically and
experimentally that a nonlinear beam can be reflected by
a negative (repulsive) defect in a photonic lattice if the
beam’s incident angle is below a threshold value. When the
incident angle is above this threshold, the beam simply passes
through the defect. Numerically, we find that the transition
from reflection to transmission at the threshold angle is very
sharp. Although precise experimental determination of such a

*jyang@cems.uvm.edu

threshold angle poses a challenge, we clearly observe such
a transition by varying the incident angle. This physical
phenomenon provides a new way to use the incident angle to
control the transmission or reflection of light beams in a lattice
network. If the defect is absent or positive, no evident transition
from reflection to transmission occurs; thus a negative defect is
more robust for nonlinear beam control. These nonlinear beam
dynamics are also compared with linear nondiffracting-beam
propagation in a photonic lattice with a defect. It is found
that the linear phenomena share some common features with
the nonlinear phenomena. In particular, linear nondiffracting
beams in lower Bloch bands, which move at smaller tilting
angles, can be reflected by both positive and negative defects;
but linear nondiffracting beams in higher Bloch bands, which
move at larger tilting angles, can pass through these defects.
By employing a delta-function defect model, many of these
linear phenomena are analytically explained as well. Some
differences between the linear and nonlinear phenomena also
exist. In particular, nonlinear evolutions in uniform lattices and
in lattices with positive defects at moderate incident angles are
much more complex than the linear counterparts.

II. THEORETICAL STUDY OF BEAM PROPAGATION IN
PHOTONIC LATTICES WITH DEFECTS

The theoretical model for beam propagation in a photonic
lattice induced in a biased photorefractive nonlinear medium
can be written as [2,9]

iUz + Uxx + Uyy − E0

1 + IL(x,y) + |U |2 U = 0, (1)

where U is the slowly varying amplitude of the probe beam, z

is the direction of propagation (in units of 2k0neD
2/π2), (x,y)

defines the transverse plane (in units of D/π ), E0 is the applied
dc field [in units of π2/(k2

0n
4
eD

2r33)], IL(x,y) is the photonic
lattice with a single-site negative defect, and intensities of
the probe beam and the lattice have been normalized by
the dark irradiance of the crystal. Here D is the lattice
spacing, k0 = 2π/λ0 is the wave number of the laser beam
in the vacuum (λ0 is the wavelength), ne is the unperturbed
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refractive index, and r33 is the electro-optic coefficient for
an extraordinary beam. In our experiments, the typical values
of these physical parameters are D = 30 µm, λ0 = 0.5 µm,
ne = 2.3, and r33 = 280 pm V−1. Thus, one (x,y) unit roughly
corresponds to 10 µm, one z unit roughly corresponds to 5 mm,
and one E0 unit roughly corresponds to 9 V mm−1 in physical
units.

Our motivation for the present study is to explore new ways
to control beam steering in a lattice network. For beam steering,
an important requirement is that optical beams stay localized
as they propagate through the lattice. If a beam propagates
linearly (at low intensity, for instance), it will strongly diffract
unless it is launched at the zero-diffraction angle [1,17,19].
This implies that there is no freedom to launch linear beams
at arbitrary angles. On the other hand, it is well known
that nonlinear beams can self-trap and form solitons in both
homogeneous media and photonic lattices [1–4]. In addition,
these solitons can be launched at a range of angles and still
remain largely localized during propagation. This motivates
us to explore how the incident angle affects nonlinear beam
steering in photonic lattices, especially in the presence of a
defect.

A. Nonlinear beam propagation in 1D case

First, we consider the 1D case, where Eq. (1) is y

independent. In this case, we take the photonic lattice with
a single-site defect as

IL(x) = I0 cos2x [1 + h exp(−x8/128)], (2)

where the lattice is π -periodic, its peak intensity is taken as
I0 = 3, the defect is confined to a single lattice site at x = 0,
and h is the strength of the defect. When h < 0, the defect is
negative (repulsive), while when h > 0, the defect is positive
(attractive). These defected lattices with h = −1 and 1 as well
as the uniform lattice (with h = 0) are shown in the first column
of Fig. 1. The applied dc field in Eq. (1) is taken as E0 = 10.
The initial probe beam is taken as

U (x,0) = r0 e−(x−x0)2/2+iαx, (3)

with r0 = 3, x0 = −2π , which is a tilted Gaussian beam with
peak intensity r2

0 = 9 and is launched two lattice sites away
from the defect site. The tilting angle of this Gaussian beam is
proportional to the phase-gradient parameter α. Specifically,
the physical tilting angle θ is related to α as

θ = αλ0/(2D), (4)

where λ0 is the beam’s wavelength and D is the lattice spacing.
At the typical experimental wavelength and lattice spacing
mentioned earlier, this tilting angle is roughly equal to 0.008α

radians, or 0.5α degrees. In our simulations, α is used as the
control parameter. Note that without the lattice, this Gaussian
beam (3) would form a soliton which moves at velocity 2α.
Thus the power level of this Gaussian beam is in the nonlinear
regime.

First, we consider the negative defect [h = −1 in Eq. (2)].
We find that when the incident angle is below a certain
threshold (which is αc ≈ 1.23 in the present situation), the
beam is reflected back by the defect. These reflections at α =
0.94 and 1.2 are displayed in Figs. 1(b) and 1(c), respectively

z

(a) (b) (d)(c)

z

x

z

x xx

FIG. 1. (Color online) Nonlinear propagation of tilted Gaussian
beams in a 1D lattice with a negative defect (top row), no defect
(middle row), and a positive defect (bottom row). (a) Intensity field
of the lattice; (b)–(d) beam evolutions at phase gradients α = 0.94,
1.2, and 1.5, respectively. The simulation distance is z = 20 in (b)
and z = 8 in (c) and (d). The vertical dashed lines mark the defect
channel.

[note that the simulation distance is z = 20 in (b) and z = 8
in (c)]. However, above this threshold angle, the beam simply
transmits through the defect. For instance, this transmission at
α = 1.5 is displayed in Fig. 1(d). For the physical parameters
used above, this threshold αc corresponds to a threshold tilting
angle of θc ≈ 0.6◦.

What would happen if the defect is absent or positive?
To address this question, we repeat the above simulations for
these two cases (with all other parameters unchanged). The
simulation results are displayed in the middle and lower rows
of Fig. 1 for comparison. It is seen that for these two cases,
the beam also transmits through the lattice or defect at large
tilting angles [see Fig. 1(d)] and is reflected back at small
tilting angles [see Fig. 1(b)], similar to the negative-defect case.
However, at moderate angles, the beam largely passes through
the lattice or defect in the uniform lattice and in the positive
defect [see Fig. 1(c)], unlike the reflection in the negative
defect. Thus, beam reflection near the threshold angle as shown
in Fig. 1(c) results unambiguously from the negative defect.

To better understand beam propagations in the three lattices
of Fig. 1(a), we now systematically investigate how the
propagation outcome depends on the incident angle in these
three cases. For this purpose, we perform a series of numerical
simulations at many values of the phase gradient α. For each
simulation, we monitor the percentage of the beam’s energy
that is reflected back. To measure this energy reflection, we
define the reflection coefficient R as the ratio between the
power of the beam on the left side of the defect (x < −π/2)
and the total power of the beam at large propagation distances;
i.e.,

R ≡
∫ −π/2
−∞ |U (x,z)|2dx∫ +∞
−∞ |U (x,z)|2dx

, z � 1. (5)

033836-2
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0
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FIG. 2. (Color online) The reflection coefficients R versus the
phase gradient α for the three lattices in column (a) of Fig. 1 (dashed
red line for negative defect, dash-dotted pink line for uniform lattice,
and solid black line for positive defect). The letters b, c, and d mark
the values of the phase gradient α used in columns (b), (c), and (d) of
Fig. 1.

Here the interval of −∞ < x < −π/2 is taken so that the
energy trapped by the defect at x = 0 (if any) will not be
counted as reflected energy. These reflection curves versus α

for these three lattices are displayed in Fig. 2 (the simulation
distance for this figure is z = 20). This figure shows that for
all three lattices, the beam transmits through the defect or
lattice at large tilting angles [such as α = 1.5 of Fig. 1(d)]. At
small tilting angles, however, outcomes for these three lattices
show significant differences. In the negative defect, the beam is
always reflected back when α < αc ≈ 1.23, and the transition
from reflection to transmission at this threshold angle is very
sharp. But in the uniform lattice and in the positive defect,
the beam is reflected only for certain ranges of α values [such
as α = 0.94 of Fig. 1(b)], and is just partially reflected or
not reflected at all for the other α values [such as α = 1.2 of
Fig. 1(c)]. In addition, the amount of reflected energy depends
on α in a very complicated way. This intricate dependence
of beam propagation on the tilting angle α may be related
to resonant kink scattering by positive defects in the sine-
Gordon and φ4 models [21], but this question needs further
investigation.

This angle-dependent beam reflection and transmission
suggests a way to use the incident angle to control a
beam’s propagation direction inside a lattice network. For this
application, the negative defect makes a good choice, because
in this case the transition between reflection and transmission
near the threshold angle is very sharp (see Fig. 2). For lattices
with a positive defect and the uniform lattice, beam reflection is
too sensitive to the incident angle, which may pose a challenge
for engineering implementations.

It should be added that when the tilting angle is very small
(α < 0.45 in the present case), the beam will be trapped by its
initial lattice site and unable to move across to the neighboring
lattice sites. The reason for this trapping is that the photonic
lattice creates a potential well at each lattice site. Since our
probe beam is launched from the bottom of this potential well,
if the tilting angle is very small, the beam cannot overcome this
potential barrier and thus will be trapped in the initial lattice
site.

B. Comparison with linear beam propagation in 1D

To understand the above nonlinear beam propagation in
defects and uniform lattices, it is insightful to compare them

with linear beam propagation in the same situations. When the
propagation is linear, due to lack of self-focusing, a narrow
Gaussian beam such as (3) would strongly diffract and thus is
not suitable for steering applications [1]. However, it is well
known that Bloch bands of photonic lattices possess points of
zero diffraction. When Bloch modes at these zero-diffraction
points are modulated into localized packets and launched
into the lattice, they can transmit through the lattice for long
distances with little diffraction. These linear beams are often
called nondiffracting beams, and their transmission angles
called nondiffracting angles. In the literature, it seems that
only the nondiffracting beam in the first Bloch band was ever
used [17,19], and its nondiffracting angle is relatively small.
When this beam encounters bright and dark soliton blockers
(which can be viewed as positive and negative defects), it was
found to be reflected back by these blockers [17,19]. Below
we will use nondiffracting beams not only on the first Bloch
band but also on the higher bands. These linear beams will
be launched into the lattices of Fig. 1(a). We will show that
propagations of these linear beams share many features of the
nonlinear beams in the previous subsection, but significant
differences between them exist as well.

First, we illustrate these linear nondiffracting beams. In
Fig. 3(a), the first Bloch band of the uniform lattice (2) (with
h = 0) is displayed. This Bloch band has two zero-diffraction
points [where µ′′(k) = 0], and they are located at k = ±0.55.
When the Bloch modes at these zero-diffraction points are
modulated into localized packets, they would move across the
lattice with little diffraction. This is illustrated in Fig. 3(b),
where linear propagation of this nondiffracting beam at k =
0.55 in the uniform lattice is plotted. This figure is obtained
by simulating the linear model of (1) (with the nonlinear
term |U |2 removed). The nondiffracting beam at k = −0.55

−1 0 1

µ (k)
(a) (b) (c) (d)

(f)(e)

z

(g) (h)

x

(j)(i)

x

z

x

(k)

x

(l)

FIG. 3. (Color online) Linear propagations of nondiffracting
beams in the uniform lattice (top row), with a negative defect (middle
row), and with a positive defect (bottom row). (a) First Bloch band
(the circle marks the zero-diffraction point); (e), (i) lattices with
negative and positive defects. The second, third, and fourth columns
show propagations of nondiffracting beams on the first, second, and
third Bloch bands (with simulation distances z = 120,20, and 8),
respectively. The vertical dashed lines mark the defect channel.
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has a negative tilting angle [µ′(k) < 0] and is unnecessary
to consider. On higher Bloch bands, zero-diffraction points
exist as well. Specifically, these zero-diffraction points for the
second and third Bloch bands are located at k = 0.35 and
k = 0.78, respectively. Propagations of these nondiffracting
beams on the second and third Bloch bands in the uniform
lattice are displayed in Figs. 3(c) and 3(d). These figures
confirm the “nondiffracting” nature of these beams. It should
be noted that the evolution distances in Figs. 3(b), 3(c), and 3(d)
are different. Specifically, these distances are z = 120, 20, and
8 for (b), (c), and (d), respectively. But their horizontal (x) axes
are identical. Thus, Figs. 3(b)–3(d) show that the tilting angles
of nondiffracting beams on the second and third Bloch bands
are much larger than that on the first band.

Now, we launch these nondiffracting beams into the lattices
with negative and positive defects [see column (a) of Fig. 1].
These lattices are reproduced in Figs. 3(e) and 3(i). Interactions
of these nondiffracting beams with the defects are displayed
in the second and third rows of Fig. 3. It is seen that the
nondiffracting beam on the first Bloch band is reflected back
by both the positive and negative defects [see Figs. 3(f)
and 3(j)]. This result agrees with the previous ones reported
in [17,19]. However, the nondiffracting beam on the third band
transmits through both the positive and negative defects [see
Figs. 3(h) and 3(l)]. On the other hand, the nondiffracting
beam on the second band is fully reflected by the negative
defect [Fig. 3(g)] but is only partially reflected by the positive
defect [Fig. 3(k)]. Recalling that the nondiffracting angles of
these beams increase with higher Bloch bands, we see that
the above linear propagations in defects resemble nonlinear
ones in Fig. 1. In particular, for both linear and nonlinear
propagations, the beam transmits through positive and negative
defects at large tilting angles. At moderate tilting angles, the
beam is reflected more strongly by negative defects than by
positive defects. In addition, beam reflections in positive and
negative defects at small tilting angles can occur in both
linear and nonlinear systems. However, differences between
linear and nonlinear propagations are also significant. One
difference is that in a uniform lattice, a linear nondiffracting
beam always transmits through the lattice [see Figs. 3(b)–
3(d)], but a nonlinear beam could be reflected (see Fig. 1).
Another difference is that nonlinear beams in uniform lattices
and positive defects at small and moderate tilting angles
exhibit much more complex evolution behaviors than linear
nondiffracting beams (see Fig. 2).

C. Analysis of linear 1D phenomena using a delta-function
defect model

The results in the above two subsections indicate that
the linear model of (1) can capture many important features
of nonlinear beam propagations. Thus we are motivated
to analytically study this linear model so that a deeper
understanding of these phenomena can be reached. In order
to proceed analytically, we approximate the defect in (1) by a
delta function, so that our linear 1D model equation becomes

iUz + Uxx + [V (x) + Hδ(x)]U = 0, (6)

where

V (x) = −E0/(1 + I0 cos2 x) (7)

is a periodic potential, δ(x) is a delta defect function located
at x = 0, and H is the strength of the delta defect (H > 0 for
positive defect and H < 0 for negative defect). When the field
is stationary, we can express the solution U (x,z) of (6) as

U (x,z) = u(x)e−iµz, (8)

where µ is the propagation constant (in Bloch bands), and u(x)
is governed by the equation

uxx + [V (x) − µ + Hδ(x)]u = 0. (9)

Without the defect, the solution to this linear equation is a
combination of Bloch modes u1 = eikxp(x; k) and u2 = u∗

1 =
e−ikxp∗(x; k), where k is the corresponding wave number of
the propagation constant µ, p(x; k) is a π -periodic function in
x at wave number k, and the superscript * represents complex
conjugation. To simplify notations, we will suppress the k

dependence of p(x; k) and denote it just as p(x) below.
In the presence of the delta defect, Eq. (9) defines a

scattering problem, where

u(x) =
{

eikxp(x) + Ae−ikxp∗(x), x < 0,

B eikxp(x), x > 0.
(10)

Here eikxp(x) at x < 0 is an incoming Bloch wave moving
from x = −∞ along the positive x axis, A e−ikxp∗(x) is the
wave reflected by the defect and moves back to x = −∞,
B eikxp(x) is the wave transmitted through the defect and
moves to x = +∞, and A,B are the amplitudes of reflected
and transmitted waves, respectively. The values of A and B

can be determined by the following conditions:

u(0−) = u(0+), u′(0−) − u′(0+) = Hu(0). (11)

The first condition of (11) is the continuity condition of u(x)
at x = 0. The second condition of (11) is the jump condition
of u′(x) at x = 0, which can be obtained by integrating Eq. (9)
from x = 0− to 0+. Utilizing the two conditions in (11) as well
as the formulas (10), we find that

A = − Heiρ

iγ + 2ik + H
, B = iγ + 2ik

iγ + 2ik + H
, (12)

where

eiρ ≡ p(0)

p∗(0)
, γ ≡ 2 Im

(
p′(0)

p(0)

)
.

Here Im(· · ·) represents the imaginary part of a complex
number. It is easy to see that

|A|2 + |B|2 = 1, (13)

which means that the sum of reflected and transmitted powers
is equal to the power of the incoming wave. The percentage of
reflected power in this scattering problem [i.e., the counterpart
of the reflection coefficient defined in (5)] is

R = |A|2 = H 2

(γ + 2k)2 + H 2
. (14)

This formula shows that for delta defects, the amount of
reflected power is always the same for positive and negative
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FIG. 4. (Color online) The reflection coefficients R versus the
defect strength H for the nondiffracting beams on the first and third
Bloch bands (n = 1 and n = 3) in the delta-defect model (6) with the
periodic potential (7).

defects of the same strength ±H . In addition, R → 0 when
H → 0, and R → 1 when H → ±∞. In other words, if the
defect is very weak, all energy will transmit through the
defect, while if the defect is very strong, all energy will be
reflected back by the defect. For a defect of moderate strength,
the amount of reflected and transmitted powers will depend
on the ratio |γ + 2k|/|H | of the underlying Bloch wave. To
illustrate, we take the periodic potential (7) which corresponds
to the uniform lattice in Figs. 1 and 3 (with E0 = 10 and
I0 = 3 as before). For the Bloch modes at the zero-diffraction
points of the first and third bands (with k = 0.55 and 0.78,
respectively; see earlier text), we find that γ = −0.9576 for
the former and γ = 2.4236 for the latter. The corresponding
reflection coefficients R versus the defect strength H from
formula (14) are plotted in Fig. 4. It is seen that at a moderate
defect strength (say H = ±1), while the nondiffracting beam
on the first Bloch band is mostly reflected back by the
defect (since |γ + 2k| = 0.1424 	 |H |), the nondiffracting
beam on the third Bloch band mostly transmits through
the defect (since |γ + 2k| = 3.9836 � |H |). These analytical
results qualitatively explain the reflection of the first-band
nondiffracting beam in Figs. 3(f) and 3(j) and transmission
of the third-band nondiffracting beam in Figs. 3(h) and 3(l).
Thus, the above analysis using a delta-function defect model
deepens our understanding of linear beam propagations in
lattices with defects. It should be pointed out, however, that not
all analytical predictions from the above delta-defect model
match the results of linear propagations in realistic defects
[such as (2)]. For example, the above analysis predicts that
the amount of power reflection is exactly the same for positive
and negative defects of the same strength. This is not true for
realistic defects [see Figs. 3(g) and 3(k)]. The reason for such
discrepancies is our simplification of a realistic smooth defect
by a single-point delta-function defect.

D. Nonlinear beam propagation in 2D case

We perform similar studies for beam deflection in 2D
lattices, and find that results in the 2D case qualitatively
resemble those in the 1D case (see Sec. II A). In this subsection,
we focus on 2D beam propagations in a negative defect, since a
negative defect is more feasible for beam-steering applications
(see Fig. 2). For this purpose, we take the 2D lattice with a

x

y

(a)

x

z

(b)

x

(d)

x

(c)

FIG. 5. (Color online) Nonlinear propagation of a tilted Gaussian
beam in a 2D lattice with a negative defect. (a) The defected lattice
and initial probe beam (its tilting direction is marked by an arrow);
(b) beam reflection at a small incident angle (with defect); (c)
propagation of the beam at the same incident angle of (b) in a perfect
lattice (without defect); (d) beam transmission at a large incident angle
(with defect). The vertical dashed lines mark the defect channel.

single-site negative defect as shown in Fig. 5(a), where the
lattice is given by

IL(x,y) = I0 cos2 x + y√
2

cos2 x − y√
2

{1 − e−(x2+y2)4/128},
(15)

with the peak intensity I0 = 3 as in the 1D case. This lattice
is oriented diagonally as in most experiments. The applied dc
field is also E0 = 10 as before, and the initial probe beam
is a 2D Gaussian (with peak intensity 9) launched two sites
away from the defect and tilted relative to the defect channel,
as shown in Fig. 5(a). The simulation distance is z = 10.
At small incident angles (specifically α < αc ≈ 1.20), the
beam is also reflected. This is shown in Fig. 5(b) where the
beam propagation in the (x,z) cross section is displayed. In
this simulation, the tilting parameter α = 0.95 is used. It is
interesting to note that the threshold value αc ≈ 1.20 in this
2D case is almost the same as the 1D threshold value αc ≈ 1.23
in Sec. II A. Without this defect (i.e., in a perfect lattice), at
the same small incident angle of Fig. 5(b), the beam would
be split and trapped to nearby lattice sites, and no reflection
occurs [see Fig. 5(c)]. Thus it is evident again that the negative
defect leads to beam reflections, just like in the 1D case. At
large angles (α > 1.20), the beam passes the defect as shown
in Fig. 5(d) (here α = 1.35 is used).

III. EXPERIMENTAL RESULTS

The above predicted phenomenon has also been observed
in our experiment. The experimental setup is similar to that
used in our previous work with photonic defects [8,10].
The 1D lattice (spacing 32 µm) with a single-site negative
defect is created and maintained throughout the 11-mm-long
photorefractive crystal at a bias field of 0.8 kV/cm [see
Fig. 6(a)]. A tilted probe beam is launched into the lattice
two sites away from the defect channel, as shown in Fig. 6(a).
The probe beam is extraordinarily polarized, thus it undergoes
strong nonlinear propagation in the biased crystal. At a small
incident angle of about 0.5◦, most of the probe beam is
reflected by the defect channel when exiting the crystal [see
Fig. 6(b)], but as the angle is increased to 0.76◦, the probe beam
passes through the defect [Fig. 6(d)]. In a perfect lattice under
the same small launching angle of 0.5◦ as in Fig. 6(b), our
experimental results show that beam reflection does not occur
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y

x
z

FIG. 6. (Color online) Experimental demonstration of beam
reflection by a negative defect in a 1D lattice. (a) Transverse lattice
pattern with a negative defect and input probe beam (brightest stripe)
launched along z direction (pointing to the inside of the paper) but
tilted toward the defect channel; (b) output (reflection) at a small
incident angle (with defect); (c) output (transmission) at the same
incident angle of (b) in a perfect lattice; (d) output (transmission) at a
large incident angle (with defect). Top: experimental results; bottom:
numerical results. White dashed lines mark the defect position.

[see Fig. 6(c)]. The bottom panels of Fig. 6 show our numerical
simulation results. The numerical parameters are the same as
in Fig. 1, except that the simulation distance is z ≈ 6 here.
Qualitative agreement between numerical and experimental
results can be seen. Note that under current experimental
conditions, the previously obtained theoretical threshold αc ≈
1.23 corresponds to a tilting angle θc ≈ 0.55◦ [see Eq. (4)].
Thus, the measured titling angle for transition from reflection
to transmission agrees well with the predicted threshold tilting
angle, although precise experimental determination of such a
threshold angle poses a challenge due to experimental reasons.

We also performed a series of experiments on beam
reflection by a 2D negative defect, and typical results are shown
in Fig. 7. In this experiment, a 2D lattice (spacing 40µm)
with a single-site negative defect is created and maintained
throughout the 20-mm-long photorefractive crystal at a bias
field of 2kV/cm [see Fig. 7(a)]. Similar to the 1D case, our
probe beam is launched two sites away from the defect, as
shown in Fig. 7(a). When the incident angle of the probe beam
is about 0.46◦, the probe beam is reflected by the defect channel
[see Fig. 7(b)]. However, at the same angle but without defect,
most of the probe beam tunnels through many lattice sites when
exiting the crystal [see Fig. 7(c)]. In the presence of defect but
when the probe beam is launched at a larger incident angle of
about 0.7◦, the probe beam again travels through many lattice
sites with most of the power passing through the defect channel
[see Fig. 7(d)]. Our corresponding numerical results from
Fig. 5 are shown in the bottom panels of Fig. 7. Again, good
qualitative agreement can be seen between the experimental
results and numerical simulations. In addition, at the above
experimental conditions, the theoretically obtained threshold
αc ≈ 1.20 in Sec. II D corresponds to a physical tilting angle
θc ≈ 0.43◦. Experimentally, the observation is that if the angle

FIG. 7. (Color online) Experimental demonstration of beam
reflection by a negative defect in a 2D lattice. (a) Defected lattice
and input probe beam (brightest spot) launched along z direction but
tilted diagonally toward the defect channel; (b) output (reflection) at
a small incident angle; (c) output at the same incident angle of (b)
when the defect is absent; (d) output (transmission) at a large incident
angle. Top: experimental results; bottom: simulation results. The plus
sign marks the defect location.

is smaller than 0.46◦, most of the input beam is reflected by
the defect. Otherwise, transmission dominates. Again, we have
good agreement with the theoretical prediction.

IV. CONCLUSION

In summary, we have demonstrated both theoretically and
experimentally that in a photonic lattice with a negative defect,
a beam is reflected by the defect channel if the incident angle
is below a threshold value. Above this threshold angle, the
beam simply transmits through the defect. The transition from
reflection-dominated propagation to transmission-dominated
propagation near the threshold angle is evident in both
numerical simulations and experimental observations. This
phenomenon can be exploited to control beam propagation
in a lattice network. If the defect is absent or positive, no
sharp transition exists, and the beam’s propagation depends
on the incident angle in a more complex way. These nonlinear
evolution phenomena have also been compared with linear
nondiffracting-beam propagation in the same lattices, and
both similarities and differences are found. In addition, some
important features of linear and nonlinear propagations have
been explained analytically by using a linear model with a
delta-function defect.
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