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Rabi oscillation, originally proposed in nuclear magnetic resonance, is a well-known phenomenon
associated with a driven two-level system. Although magnetic fields typically can bring about chirality into
unusual phenomena such as chiral edge states in the quantum Hall effect, it is not clear if chirality exists in
Rabi oscillations. Here we unveil the intrinsic chirality carried by the phase in a Rabi problem. For opposite
detuning of the driving field, the phase evolution of the probability amplitude exhibits a mirror symmetry.
Consequently, constructive or destructive interference of two off-resonant Rabi processes under different
initial conditions is level dependent and symmetry protected. Experimentally, we demonstrate such features
in a photonic setting with adjustable detuning, yet our results may prove pertinent to the study of similar
phenomena in other driven two-level systems beyond photonics.
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In his seminal paper, Rabi described a cyclic state
transition of a nuclear moment under an external oscillating
magnetic field [1]. This milestone finding is the core of
technologies including nuclear magnetic resonance
spectroscopy and magnetic resonance imaging. In essence,
Rabi oscillation is related to a two-level quantum system
that interacts with an external periodic driving field. Such a
simple system is widely applied to many problems in
physics, in the areas such as quantum computing,
condensed matter, atomic and molecular physics, nuclear
and particle physics, and quantum optics.
In the original Rabi oscillation, both the energy level

splitting and the state oscillation are induced by magnetic
fields. Magnetic fields (or equivalent synthetic fields) in
general can bring about chiral effects as exemplified by
the quantum Hall edge states and related topological
phenomena [2–5]. In the same vein, chirality should
exist as the Rabi oscillation happens. However, to our
knowledge, it has never emerged in the probability
oscillatory dynamics routinely observed in the control of
various quantum or classic states of electrons, photons,
phonons, excitons, polaritons, atoms, and molecules
[6–18]. The long-term absence of Rabi chirality suggests
a possibility that it might be hidden in other dimensions.
In this Letter, we uncover theoretically and demonstrate

experimentally the chiral phase evolution in Rabi oscillations.
This chiral effect leads to a level-dependent constructive or
destructive interference of two off-resonant Rabi processes
under different initial conditions. In experiment, such coher-
ent relationship is observed by employing a photonic
platform.
The Hamiltonian of a Rabi problem is generally written

as H ¼ −u ·B. It describes a spin-1=2 system with a

normalized magnetic moment u ¼ ðσx; σy;σzÞ placed in a
classical magnetic field B. The magnetic field consists of a
static component along the x direction and a radio-
frequency (v) component oscillating along the z direction,
i.e., B ¼ ðωℏ=2; 0;−2ε cos vtÞ (ℏ ¼ 1 hereafter), where
ω and ε are both constants determining the field strength.
The former brings about two nondegenerate states, namely,
the spin-up and spin-down states. Their energy difference is
ω, also called transition frequency. The oscillating mag-
netic field induces the transition between the two states. In a
rotating frame with an angular speed of v around the z axis,
the magnetic field is reshaped asB0 ¼ ðε; 0;Δ=2Þ under the
rotating-wave approximation in the energy representation,
where Δ ¼ ω�v is the detuning of the radio frequency
relative to the transition frequency and its value is adopted
as positive without loss of generality. The spin-up and -
down states in this representation are j↑i ¼ ð1

0
Þ and

j↓i ¼ ð0
1
Þ, respectively. A Rabi problem can be visualized

as a precession of a Bloch vector about the magnetic field
B0. For a given state evolving as c↑j↑i þ c↓j↓i, or simply
denoted as ð c↑c↓Þ, the polar and azimuthal angles (θ and ϕ) of
the Bloch vector are obtained by solving cosðθ=2Þ ¼ jc↑j
and sinðθ=2Þeiϕ ¼ c↓jc↑j=c↑ (where c↑ and c↓ are nor-
malized time-dependent complex amplitudes at the upper
and bottom levels, respectively, under the condition of
jc↑j2 þ jc↓j2 ¼ 1). Providing that the sign of the detuning
is reversed, a mirrored version of the original Bloch vector
motion can be readily found, and its state evolution can be

either
�

c�↑−c�↓
�
or

� −c�↑
c�↓

�
. However, the chirality cannot be

revealed via the probabilities because they are the same for
the two mirrored cases. We thus wonder whether
such chirality could be revealed in other dimensions such
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as phase. To this end, a coherent overlapping of two
dynamical processes of Rabi oscillation under different
initial conditions is considered: the 1st process, represented

as
�

c1↑;�Δ
c1↓;�Δ

�
for opposite detunings, starts from the j↑i state;

while the 2nd one, represented as
�

c2↑;�Δ
c2↓;�Δ

�
, is initiated from

the j↓i state. On the Bloch sphere presentation, they
undergo circular motion starting from either the North or
the South Pole about the corresponding magnetic
field (Fig. 1). By considering the symmetry property of
the system, their amplitudes at each level have the
following relationships: c�1↑;þΔ¼c1↑;−Δ, −c�1↓;þΔ¼c1↓;−Δ,
−c�2↑;þΔ¼c2↑;−Δ and c�2↓;þΔ ¼ c2↓;−Δ. Then we can obtain

φ↑;þΔ þ φ↑;−Δ ¼ 2mπ þ π;

φ↓;þΔ þ φ↓;−Δ ¼ 2mπ þ π; ð1Þ
wherem is an integer, φ↑;�Δ and φ↓;�Δ are the phase delays
of the 2nd Rabi process relative to the 1st one at the levels
j↑i and j↓i, respectively. As shown in Eq. (1), the phase
difference in the same energy level is mirror-symmetric
aboutmπ þ π=2 for opposite detunings. The state evolutions
associated with the motions in Fig. 1 are represented by [19]

c1↑;�Δ ¼ c�2↓;�Δ ¼ cosΩt ∓ iΔ
2Ω

sinΩt;

c1↓;�Δ ¼ c2↑;�Δ ¼ − iε
Ω
sinΩt; ð2Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2=4þ ε2

p
is the oscillation frequency.

Hence,
�

c1↑;�Δ
c2↑;�Δ

�
and

�
c1↓;�Δ
c2↓;�Δ

�
can form Bloch vectors whose

motions are the same with that for the Rabi oscillations

initiated from the North and the South Poles, i.e.,
�

c1↑;�Δ
c1↓;�Δ

�

and
�

c2↑;�Δ
c2↓;�Δ

�
, respectively. Then φ↑;�Δ and φ↓;�Δ are

duplicated to the azimuthal angles of these newly formed
Bloch motions [Figs. 2(a) and 2(b)]. Clearly, φ↑;þΔ or φ↓;−Δ
is merely valid in the quadrants I and IV, while φ↑;−Δ or
φ↓;þΔ in the quadrants II and III. Thus, in the case of positive
detuning, the two Rabi processes have constructive and
destructive relationships at the levels j↑i and j↓i, respec-
tively. Such a level-dependent coherent picture is a direct
outcome of the chirality: it is symmetry protected as it can be
reversed only via altering the sign of the detuning.
Specifically, typical evolutions of the phase difference
corresponding to the Bloch vector motion of the single
round are presented in Figs. 2(c) and 2(d), while for the case
of zero detuning, the phase difference between the two Rabi
processes in the same energy level is always 2mπ � π=2,
indicating a null contribution from the cross term in the
coherent overlapping.
In order to demonstrate the aforementioned level-

dependent constructive and destructive relationships, we
study the Rabi oscillation in a photonic lattice [20]. The
propagation of light in space is analogous to the evolution
in time. In the absence of longitudinal modulations, the

FIG. 1. Bloch sphere illustration of Rabi oscillations under
opposite detunings. Procession motion of a Bloch vector starting
from the (a),(b) North and (c),(d) South Poles (denoted as red
dots), corresponding to the evolution starting from the j↑i and j↓i
states, respectively. The associated state vectors are listed below
each sphere for positive (left) and negative (right) detunings.

FIG. 2. Coherent relationship between two processes of Rabi
oscillations initiated from different energy levels. (a),(b) dupli-
cation of the phase difference between the two Rabi processes at
either the level j↑i or j↓i in the azimuthal angle of a Bloch vector;
(c),(d) evolution of the phase difference calculated by using
Eq. (2) with ε ¼ 2 and Δ ¼ 0.5 as a typical example. Blue solid
and red dashed lines correspond to the cases of negative and
positive detunings, respectively.
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photonic lattice is a uniformly distributed waveguide array,
in which the wave dynamics can be described by the
following coupled-mode equation under the tight-binding
condition [21]:

idψn=dz ¼ −Kðψn−1 þ ψnþ1Þ; ð3Þ

where ψn is the probability amplitude in the nth waveguide,
z is the propagation direction along the waveguide, andK is
the coupling coefficient between two nearest sites. The
eigenvalue problem in this system can be solved by
assigning ψn ¼ exp½iðβz�qnÞ�, where β is the propagation
constant and q is the quasimomentum. We aim to realize a
transition between the state at q ¼ 0 and the degenerated
state at q ¼ �π located at the two edges of the Bloch band
expressed as β ¼ 2K cos q. For this purpose, a proper
longitudinal modulation is required. It can be introduced
by recording the nonlinear beating of the two modes via
refractive index changes [22]. With such light-induced
structures, the Hamiltonian of our system becomes
H ¼ ðfðzÞ−K

−K
fðzþτ=2ÞÞ, where fðzÞ ∝ cosð2πz=τÞ indicates the

effective written index changes. This Hamiltonian is in
accordance with the semiclassical Rabi model as used in
our theoretical part. In the absence of the written structure,
it describes a two-level system in the tunneling represen-
tation, where the spin-up and spin-down states are
j↑i ¼ 1ffiffi

2
p ð 1

−1Þ and j↓i ¼ 1ffiffi
2

p ð1
1
Þ, corresponding to the lattice

modes at q ¼ �π and q ¼ 0, respectively.
Following the above analysis, we employ in our experi-

ment a waveguide array fabricated by the titanium
in-diffusion technique on the surface of a lithium niobate
(LiNbO3) crystal [26] (see the experimental setup in the
Supplemental Material [22]). The sample length is 14 mm,
and the array period is 6.8 μm. A broad Gaussian beam
(quasi-one-dimensional plane wave) and a cosine-Gaussian
beam (sinusoidally modulated) are employed to approxi-
mately excite the lattice modes at q ¼ 0 and q ¼ �π,
respectively. To this end, a phase pattern shown in Fig. 3(a)
is imposed on a programmable spatial light modulator
(SLM). It picks out three vertical stripe beams from a broad
beam (λ ¼ 532 nm) illuminating the SLM with the assis-
tance of a 4f system (consisting of a couple of conjugated
cylindrical lenses). Through an objective, the center stripe
becomes a Gaussian beam, while the outer two stripes are
shaped into a cosine-Gaussian beam at the input of the
photonic lattice [Fig. 3(a)]. Both beams are elongated
horizontally, covering a large number of waveguides
(∼60) to only excite the modes around q ¼ 0 and
q ¼ �π. The longitudinal intensity patterns resulted from
their nonlinear beating can be transferred into index
changes through the photovoltaic-photorefractive effect
[12]. The detuning sign of our Rabi system can be changed
at ease by simply changing the initial condition of the
writing process. Assuming r is the ratio between the power
of the cosine-Gaussian and Gaussian beams, Δ > 0, Δ ¼ 0

and Δ < 0 correspond to r > 1, r ¼ 1 and r < 1,
respectively (see the Supplemental Material [22]).
To probe such a structure, the same Gaussian beam,

cosine-Gaussian beam or their combination is selectively
launched, as it can be switched on and off at ease by using
the center, outer, or all the stripes of the phase pattern,
respectively [Fig. 3(a)]. These optical beams illuminate the
Rabi lattice in less than two seconds for each measurement,
and are otherwise blocked when only dark illumination for
the crystal is needed. As a result of the slow nonlinear
response of our sample, the probe beam experiences a
linear propagation during probing measurements. The state
transition is characterized by transforming the output into
the momentum space, where the two lattice modes are well
distinguished, residing at the locations with different spatial
frequencies, as typically shown in Fig. 3(b). Three output
spatial spectra are captured by selectively launching the
three input beams. The spectrum associated with the
cosine-Gaussian (Gaussian) beam corresponds to the 1st
(2nd) Rabi process starting from the level j↑i (j↓i), and the
third one represents the coherent superposition of the
previous two processes. Thus, the powers contained in

FIG. 3. Experimental demonstration of chirality in photonic
Rabi oscillations. (a) Phase patterns (upper panel) imposed on the
SLM for alternatively switching on a cosine-Gaussian beam, a
Gaussian beam, or their combination (bottom three panels)
via displaying different stripes denoted as M1, M2, and M3.
(b) Typical spatial spectral distribution at the output associated
with the probe beams, where the center (outer) part corresponds
to the j↓i (j↑i) state. (c)–(e) Coherent relationship (characterized
by Λj that is dimensionless) of two Rabi processes initiated from
different levels for the cases of (c) negative, (d) positive, and
(e) zero detunings, which are realized by setting the input power
ratio between the Gaussian and cosine-Gaussian writing beams as
(c) 2∶1, (d) 1∶2, and (e) 1∶1, respectively. Note that the strength
of the driving term becomes larger for longer writing time.
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the center stripe of the three spectra are P1jc1↓j2, P2jc2↓j2
and j ffiffiffiffiffiffi

P1

p
c1↓ þ

ffiffiffiffiffiffi
P2

p
c2↓j2, while those in the outer two

stripes are P1jc1↑j2, P2jc2↑j2 and j ffiffiffiffiffiffi
P1

p
c1↑ þ

ffiffiffiffiffiffi
P2

p
c2↑j2,

where P1 (P2) is the power of the cosine-
Gaussian (Gaussian) probe beam, and numbers 1 and 2
indicate the 1st and the 2nd processes, respectively. In
measurement, the values of P1jc1jj2, P2jc2jj2 and
j ffiffiffiffiffiffi

P1

p
c1j þ

ffiffiffiffiffiffi
P2

p
c2jj2 (j is ↑ or ↓) can be obtained by

analyzing the three spectra (see a more detailed method in
the Supplemental Material [22]). Then the coherent rela-
tionship at each level is readily obtained by calculating the
parameter Λj¼j ffiffiffiffiffiffi

P1

p
c1jþ

ffiffiffiffiffiffi
P2

p
c2jj2=ðP1jc1jj2þP2jc2jj2Þ,

which indeed shows a comparison between coherent
and incoherent superpositions of the two Rabi processes
initiated from either level.
In the first experiment, the power ratio of the Gaussian and

cosine-Gaussian beams is set as 2∶1 and their total power is
2.2 μW. Thanks to the slow nonlinear response of our
crystal, we can obtain various strengths of the driving term
by simply altering the length of writing time [27] (see the
Supplemental Material [22]). Nevertheless, negatively
detuned Rabi lattices are always expected, since the detuning
sign is merely determined by the input power ratio. Thus,
although the light-induced index change becomes stronger
for longer writing time, the probed two Rabi processes
always exhibit a constructive (destructive) interference at the
level j↓i (j↑i) [Fig. 3(c)]. As analyzed before, such a
level-dependent coherent picture is symmetry protected
and is only reversed by using an opposite detuning.
Next, we switch the power ratio of the Gaussian and

cosine-Gaussian beams to 1∶2 and keep the total input
power and all other excitation conditions unchanged.
Clearly, the coherent relationships at both levels are
reversed [Fig. 3(d)]. The values of Λj are not exactly
exchanged for the same writing period as compared with
that in Fig. 3(c), since the nonlinear response time of the
crystal varies with input beam intensity of different profiles.
Finally, for the case of zero detuning realized by using the
Gaussian and cosine-Gaussian writing beams with an equal
power, the two Rabi processes under test exhibit nearly an
absolute phase delay of π=2 [Fig. 3(e)]. Our experimental
results are well corroborated by numerical simulations (see
the theoretical model in the Supplemental Material [22]).
For particularly high modulation of the driving field, the

rotation wave approximation cannot be applied. In the
presence of the high frequency terms, the level-dependent
coherent relationship becomes invalid for the case of
negative detuning [Fig. 4(a)], but still exists for positive
detuning [Fig. 4(b)]. Thus, one can employ the latter case to
demonstrate the chirality. In the next experiment, the power
of the combined beam is turned up to 4.2 μW for inducing
higher index changes, yet the ratio of the Gaussian and
cosine-Gaussian beams is still 1∶2. The measured results
presented in Figs. 4(c)–4(d) clearly show the level-
dependent coherent relationship.

In conclusion, we have revealed the chirality hidden in
the phase evolution of Rabi oscillations. Our analysis
clearly shows that there is a mirror symmetry of such
evolutions for the cases of opposite detunings. This
property can be read out by the level-dependent construc-
tive and destructive interferences of two Rabi processes
initiated from different levels. The experiments performed
in a photonic platform further verify the symmetry-
protected coherent effect. Our study may bring about
new insights and perspectives to the conventional Rabi
problem applicable to fundamental physics and
technological implementation involving driven two-level
systems.
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