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We study both theoretically and experimentally the effect
of nonlinearity on topologically protected linear interface
modes in a photonic Su–Schrieffer–Heeger (SSH) lattice.
It is shown that under either focusing or defocusing non-
linearity, this linear topological mode of the SSH lattice
turns into a family of topological gap solitons. These soli-
tons are stable. However, they exhibit only a low amplitude
and power and are thus weakly nonlinear, even when the
bandgap of the SSH lattice is wide. As a consequence, if the
initial beam has modest or high power, it will either delo-
calize, or evolve into a soliton not belonging to the family
of topological gap solitons. These theoretical predictions
are observed in our experiments with optically induced
SSH-type photorefractive lattices. © 2020 Optical Society of
America

https://doi.org/10.1364/OL.411102

Topological photonics is currently one of the most active
research frontiers [1–3] due to its potential to realize robust
optical circuitry against disorder, among many proposed appli-
cations. In the linear regime, when two materials with different
topological invariants (characterized by Zak phase, Berry phase,
or Chern number) are joined, the bulk-edge correspondence
guarantees the existence of topologically protected interface
states, which exist in the gaps between Bloch bands [4–8].
Such topological interface states have been introduced and
successfully demonstrated in the realm of photonics, exhibit-
ing unconventional electromagnetic wave transport that can
overcome disorder and backscattering [9–14]. However, in
the presence of nonlinearity, this bulk-edge connection may
break down, and how these topological interface states behave
under the nonlinear effects becomes an important question.
This question has been investigated in a few topological pho-
tonic systems [15–22]. For example, in [15] it was shown that
nonlinearity can lead to deformation of topological edge modes
in one-dimensional (1D) Su–Schrieffer–Heeger (SSH) lattices.
In [16], self-localized wave packets forming topological edge
states were reported in the bulk of a 2D nonlinear photonic

topological insulator. In [17,18], families of nonlinear unidi-
rectional edge solitons were theoretically obtained in square or
honeycomb lattices of helical waveguides. In [19], it was shown
theoretically that nonlinear extended edge modes in honeycomb
lattices of helical waveguides were always unstable due to modu-
lation instability. In [20], it was shown that in a finite bimodal
lattice, nonlinearity could induce a topological phase transition
and the formation of nonlinear edge states. In [21], it was shown
both theoretically and experimentally that topological edge
states persist in the nonlinear regime in nonlinear fiber loops,
but become linearly unstable above a certain power threshold.
Most recently, in [22], it was experimentally observed that
Floquet topological solitons could form in a photonic lattice
modulated periodically along the propagation direction.

The SSH lattice is one of the simplest topological photonic
systems admitting linear topological interface modes [23,24].
In this article, we theoretically and experimentally study non-
linear effects on topological interface states in the SSH lattice
established by direct continuous-wave (CW) laser writing in a
photorefractive crystal. We show that, under either focusing or
defocusing nonlinearity, there exists a family of topological gap
solitons that are linearly stable, and their mode profiles closely
resemble the linear topological interface states. However, such
topological solitons only have low amplitude and power and
are thus weakly nonlinear, even when the bandgap of the SSH
lattice is wide. As a consequence, if the initial beam has mod-
est or high power, it will not evolve into these topological gap
solitons. Instead, it will either break up or evolve into a soliton
that does not exhibit the topological feature of the linear mode
[25]. These results are predicted theoretically and confirmed
experimentally.

Paraxial beam propagation in a photorefractive crystal with a
pre-engineered refractive index profile is governed by the follow-
ing equation [26]:
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where U(x , z) is the envelope of the electric field, k = 2πn0/λ
is the wavenumber, λ is the wavelength, n0 is the bulk refrac-
tive index, 1n(x ) is the optically pre-induced refractive index
profile, r is the electro-optic coefficient of the crystal, and E0 is
the applied DC field. Here, the intensity of the beam has been
normalized with respect to the dark irradiance of the crystal.
If we measure the transverse direction x in units of D—with
D being the characteristic scale of the pre-induced photonic
lattice—the z direction in units of 2k D2, and the applied DC
field E0 in units of 1/(k2 D2n2

0r ), and define the normalized
refractive index profile as V (x )= 2k2 D21n(x )/n0 − E0, then
the above governing equation is non-dimensionalized as

iUz +Uxx + V (x )U +
E0|U |2

1+ |U |2
U = 0. (2)

To study nonlinear effects on topological states, we choose
V (x ) to be an SSH lattice, whose profile is displayed in Fig. 1(a)
(the blue curve). The characteristic of this SSH lattice is that it
is formed by joining two bimodal periodic lattices, connected
by a topological defect [25,27,28]. In dimensionless units, each
bimodal lattice has period 4.5, with two potential humps of
the same height 2 inside each period. Since these two bimodal
lattices differ by a proper spatial shift, they have different Berry–
Zak phases [4,5]. In this case, there would be a linear localized
topological state at the interface between the two lattices, and
the propagation constant of this interface state lies in the gap
between Bloch bands of the lattices [7]. Numerically, we have
obtained these Bloch bands as well as the topologically protected
linear interface mode, and the results are shown in Fig. 1. It is
seen that this topological mode [red curve in Fig. 1(a)] is sym-
metric, having peak intensity at the interface, and zero intensity
at alternating lattice sites starting from the next neighbors.
In addition, it has opposite phase between two neighboring
intensity maxima.

Now we explore how this topological interface mode is
affected by nonlinearity. For this purpose, we look for solitons
bifurcating from this linear interface mode. These solitons will
be called topological solitons and are of the form

U(x , z)= u(x )e iµz, (3)

where u(x ) is a localized real function satisfying

uxx + V (x )u +
E0u2

1+ u2
u =µu, (4)

and µ is the propagation constant. When we choose focusing
nonlinearity and set E0 = 7, this soliton family is shown in the
upper rows of Fig. 2. Its power curve is displayed in Fig. 2(a),
where the power is defined as P (µ)=

∫
∞

−∞
|u|2dx , and its
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Fig. 1. (a) SSH lattice potential V (x ) (blue) and its linear interface
mode (red). (b) Bloch bands of the lattices over the Brillouin zone (the
red dot is the interface mode in the bandgap).

amplitude curve is displayed in Fig. 2(d). This soliton family
bifurcates to the right side of the linear interface mode’s propa-
gation constant toward the first Bloch band. Notice that these
amplitudes are all quite low, below 0.3. In addition, their powers
are quite low as well (except very close to the band edge). At two
points “b,” “c ” of the power curve, the soliton profiles are plot-
ted in Figs. 2(b) and 2(c), respectively. At very low power (point
“b”), the soliton profile closely resembles the linear interface
mode of Fig. 1(a), which is reproduced as the superimposed
red dashed line in Fig. 2(b). But at a little higher power (point
“c ”), the soliton becomes strongly delocalized, indicating that
even weak nonlinearity can cause the soliton’s delocalization.
We have also studied the linear stability of this soliton family
by computing their linear stability spectra, and found that they
are all linearly stable. To demonstrate, we plot in Figs. 2(e) and
2(f ) the linear stability spectra for the two solitons displayed
in Figs. 2(b) and 2(c) respectively. These spectra only contain
purely imaginary eigenvalues, revealing the linear stability of
these solitons.

The most significant feature of these topological solitons is
that their amplitudes and powers are quite low. This means that
these solitons are only weakly nonlinear and are not compatible
with strong nonlinearity. Thus, we call them “weakly nonlinear
topological gap solitons.” If the initial beam carries modest or
high power, it will not be able to evolve into these topological
solitons. Rather, it will have to either break up or evolve into a
nonlinear localized mode not of topological origin. It is noted
that, under the current focusing nonlinearity, there is indeed a
family of solitons residing in the semi-infinite bandgap of the
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Fig. 2. Upper two rows, a soliton family bifurcated from the linear
topological interface mode of the SSH lattice under focusing non-
linearity with E0 = 7. (a) Power curve of solitons (shaded regions are
Bloch bands). (b), (c) Profiles of solitons at points “b,” “c ” of the power
curve; vertical stripes represent regions of higher refractive indices of
the SSH lattice, and the superimposed red dashed line in (b) is the
linear interface mode. (d) Amplitude curve of solitons. (e), (f ) Linear
stability spectra of the two solitons in (b), (c), respectively. Bottom
row, nonlinear evolutions of the Gaussian beam (5) in the SSH lattice
for initial amplitude values of r0 = 0.1, 0.4 and 0.8, respectively; red
markers on top of each panel are locations of higher refractive indices of
the lattice.
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SSH lattice. Those solitons can reach modest and high ampli-
tudes and powers, but they have totally different intensity and
phase structures from these weakly nonlinear topological gap
solitons.

To test the above evolution predictions, we study the nonlin-
ear evolution of an initial Gaussian beam,

U(x , 0)= r0e−x2/2, (5)

in the SSH lattice, where r0 is the initial amplitude of the beam.
At low, medium, and high r0 values of 0.1, 0.4, and 0.8, evolu-
tions of this Gaussian beam are obtained by simulating Eq. (2)
and presented in the bottom row of Fig. 2. It is seen that at the
low amplitude of r0 = 0.1, the Gaussian beam evolves into a
low-amplitude topological soliton that is very similar to the
linear topological interface state [see Fig. 2(g)]. However, at the
modest amplitude of r0 = 0.4, the Gaussian beam breaks up [see
Fig. 2(h)]. At the higher amplitude of r0 = 0.8, the beam does
self-localize into a stationary soliton state [see Fig. 2(i)]. But this
soliton is a non-topological soliton residing in the semi-infinite
bandgap of the lattice.

What will happen if the nonlinearity is defocusing? For this
purpose, we take defocusing nonlinearity by choosing E0 =−7.
In this case, we can also find a family of topological solitons
bifurcating from the linear topological interface mode in the
bandgap. The power curve of this soliton family is shown in
Fig. 3(a), and two representative soliton profiles on the power
curve are plotted in Figs. 3(b) and 3(c). This power curve bifur-
cates to the left side of the linear interface mode toward the
second Bloch band. Similar to the focusing nonlinearity, these
topological solitons also have low amplitude and power and are
linearly stable. In addition, as the power increases, the soliton
becomes strongly delocalized. Thus, these topological solitons
under defocusing nonlinearity are only weakly nonlinear as
well, and an initial beam with modest or high power should
break up. This expectation is confirmed in the evolution sim-
ulations of the initial Gaussian beam (5), which are shown in
Figs. 3(d)–3(f ) for initial amplitude values of r0 = 0.1, 0.4 and
0.8, respectively.
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Fig. 3. Upper row, a soliton family bifurcated from the linear topo-
logical interface mode of the SSH lattice under defocusing nonlinearity
with E0 =−7. (a) Power curve of solitons (shaded regions are Bloch
bands). (b), (c) Profiles of solitons at points “b,” “c ” of the power curve;
vertical stripes represent regions of higher refractive indices of the SSH
lattice. Lower row, nonlinear evolutions of the Gaussian beam (5) in
the SSH lattice under defocusing nonlinearity for initial amplitude
values of r0 = 0.1, 0.4 and 0.8, respectively; red markers on top of each
panel are locations of higher refractive indices of the lattice.
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Fig. 4. (a) SSH lattice potential V (x ) (blue) with wider bandgap
and its linear interface mode (red). (b), (c) Power and amplitude curves
of solitons bifurcated from the linear topological interface mode of the
SSH lattice in (a) under focusing (blue, with E0 = 7) and defocusing
(red, with E0 =−7) nonlinearities. Shaded regions in (b), (c) are Bloch
bands.

One may notice that the bandgap in the SSH lattice of
Fig. 1(a) is quite narrow (its width is only about 0.5). Thus, one
may wonder if the amplitude and power of its topological soli-
tons would be higher if this bandgap is wider, so that the power
curve has more room to grow. To address this question, we
increase the height of the normalized refractive index V (x ) from
2 to 4. In addition, we increase the spacing contrast between
index humps of the lattice. The new lattice profile is plotted
in Fig. 4(a). For this new lattice, its bandgap has width 1.59,
which is 3 times wider than before. Indeed, its linear topologi-
cal interface mode is much more localized [see Fig. 4(a)]. For
this wider-gap SSH lattice, we have computed its topological
solitons under the same focusing and defocusing nonlinearities
with E0 =±7 as before, and their power and amplitude curves
are shown in Figs. 4(b) and 4(c), respectively. It is seen that even
though the bandgap is now wider, the power and amplitude
of the topological solitons are still low. Thus, they are still not
compatible with strong nonlinearities.

Our experimental results of nonlinear effects on the topo-
logical interface states are summarized in Fig. 5. The SSH lattice
with an interface similar to that shown in Fig. 1(a) is established
by direct CW laser writing method in a nonlinear SBN crystal
[25], since such an SSH lattice with an interface topological

Fig. 5. Experimental results of linear and nonlinear interface
single-channel excitation in a photonic SSH lattice. (a) Schematic
(top) and experimentally established (bottom) SSH photonic lattice
by CW laser writing, where the red dots mark the positions of the
interface and its next-nearest lattice sites. (b) Probe beam at input.
(c), (d) Linear output of the probe beam without (c) and with (d) the
lattice. (e), (f ) Nonlinear output under weak (e) and strong (f ) self-
focusing nonlinearity. (g), (h) Nonlinear output under (g) weak and
(h) strong self-defocusing nonlinearity. All intensity patterns are taken
at input/output (x , y ) transverse planes, as illustrated in (b), (e). The
blue curves superimposed in (d)–(h) are the plots of corresponding
intensity profiles along the x direction.
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defect cannot be established by conventional multi-beam
interference-based optical induction method [23,24]. The
lattice written is shown in the bottom panel of Fig. 5(a), with a
period about 45µm. The bias electric field used in lattice writing
is 2.4 kV/cm, and the resulting lattice index variation is about
4.36× 10−4. The input stripe beam [Fig. 5(b)] is launched
straightly into the interface waveguide [marked by a red dot in
the top panel of Fig. 5(a)]. This input beam, after 2 cm of linear
propagation, diffracts normally without the lattice [Fig. 5(c)],
but evolves into a linear topological interface state through the
lattice [Fig. 5(d)]. Notice that this observed interface state is sim-
ilar to that shown in Fig. 1(a). After the nonlinearity is turned
on by applying an electric field across the crystal (880 V/cm
for the self-focusing nonlinearity or −800 V/cm for the self-
defocusing nonlinearity), when the input power of the probe
beam is weak (2.13 µW for the self-focusing and 0.37 µW for
the self-defocusing cases), the output intensity pattern still
resembles that of the linear topological state [see Figs. 5(e) and
5(g)]. This indicates that, at low power (weak nonlinearity),
the probe beam has evolved into a topological gap soliton, as
analyzed in our theory. On the other hand, under strong nonlin-
earity (by increasing the power of the probe beam to 5.9µW for
self-focusing and 6.81µW for self-defocusing cases), the output
intensity pattern changes dramatically. Specifically, under self-
focusing nonlinearity, the output exhibits strong localization
into the initially excited interface waveguide [Fig. 5(f )], which
corresponds to generation of a nonlinear Tamm-like surface
state (or discrete semi-infinite gap soliton) not of topological
origin [15,25]. In contrast, under strong self-defocusing non-
linearity, the output pattern becomes strongly delocalized and
spreads into the bulk [Fig. 5(h)]. These experimental results
under weak and strong nonlinearity conditions agree well with
the theoretical predictions shown in Figs. 2 and 3.

In our theoretical model (2), the nonlinearity is saturable,
which is appropriate for photorefractive crystals used in our
experiment [26]. In silicon waveguides with a femtosecond
laser-written SSH lattice, the nonlinearity is Kerr (cubic) rather
than saturable. However, the topological solitons in our satu-
rable model (2) are all weakly nonlinear, in which case the
saturable nonlinearity becomes effectively cubic. Thus, our
results in this article should be valid for femtosecond laser-
written waveguides as well. This could well be a general feature
of nonlinear topological states bifurcated from their linear
counterparts, regardless the type of nonlinearity [25].

In summary, we have theoretically and experimentally stud-
ied nonlinear effects on topologically protected interface states
in the photonic SSH lattices. We have shown that, under either
self-focusing or self-defocusing nonlinearity, topological gap
solitons would bifurcate out from the linear topological mode
of the SSH lattice, provided that the nonlinearity is weak. As a
result, initial beams with modest or high powers would either
break up or evolve into nonlinear modes without topological
features. This inability of the SSH lattice to support strongly
nonlinear topological gap solitons suggests that the SSH lattice
and strong nonlinearity may be incompatible, and thus the
robustness and topological protection of interface states under
nonlinear excitation merit further investigation. Our results

may also have ramifications for other nonlinear topological
systems beyond optics.
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